Inclusive A Hyperon Production In Proton-Proton Reactions At 3.5 GeV Measured With Hades

Rafał Lalik

Technische Universität München Excellence Cluster 'Universe' rafal.lalik@ph.tum.de

September 15, 2016

Λ production channels

$pp \rightarrow reaction$	cross section [µb]	4	Н	notes
	3-body channels			
$\Lambda + p + K^+$	36.26	~	~	[1]
$\Sigma^0 + p + K^+$	15.5	\checkmark		[2]
$\Lambda + \Delta^{++} + \mathrm{K}^0$	29.45	~	~	[3]
$\Sigma^0 + \Delta^{++} + K^0$	9.26	\checkmark	\checkmark	[3]
$\Lambda + \Delta^+ + K^+$	9.82	\checkmark		from res. mod.
$\Sigma^0 + \Delta^+ + K^+$	3.27	~		from res. mod.
$\Sigma(1385)^{+} + n + K^{+}$	22.42	~	~	[4]
$\Sigma(1385)^{+} + p + K^{0}$	14.05	\checkmark	\checkmark	[3]
$\Sigma(1385)^0 + p + K^+$	6.0	\checkmark	\checkmark	[5]
$\Lambda(1405) + p + K^+$	9.2	\checkmark	\checkmark	[4]
$\Lambda(1520) + p + K^+$	5.6	\checkmark	~	[4]
$\Delta^{++}\Lambda(1405){ m K}^0$	5.0			[6]
$\Delta^{++}\Sigma(1385)^{0}K^{0}$	3.5			[6]
$\Delta^+\Sigma(1385)^+K^0$	2.3			[6]
$\Delta^{+}\Lambda(1405)K^{+}$	2.3			compl. to above
$\Delta^+\Sigma(1385)^0K^+$	2.3			compl. to above
	4-body channels			
$\Lambda + p + \pi^+ + K^0$	2.98		~	[3]
$\Lambda + n + \pi^+ + K^+$	2.21			fit res. mod.
$\Lambda + p + \pi^0 + K^+$	1.72			fit res. mod.
$\Sigma^{0} + p + \pi^{+} + K^{0}$	1.34		\checkmark	[3]
$\Sigma^0 + n + \pi^+ + K^+$	2.21			fit res. mod.
$\Sigma^0 + p + \pi^0 + K^+$	1.72			fit res. mod.

[1] G. Agakishiev et al. PL B742 (2015).

[2] M. Abdel-Bary et al. EPJ A46 (2010). [Erratum: EPJA46,435(2010)].

[3] G. Agakishiev et al. PR C90 (2014).

[4] G. Agakishiev et al. PR C85 (2012).

[5] G. Agakishiev et al. PR C87 (2013).

[6] G. Agakishiev et al. PR C90 (2014).

intermediate resonances production

associated resonant production

Studying Λ in proton+proton reactions

- ► Pin down contribution of Λ^* , Σ^* , Δ^+ , Δ^{++} and N^* resonances in the beam kinetic energy regime of 3.5 GeV.
- Tuning of transport models (GiBUU, UrQMD) and calculations.
- Production in elementary system as input for AN interaction in nucleus ($\rho \approx \rho_0$) and neutron stars ($\rho \gg \rho_0$).

 ΛN – attractive, ΛNN – repulsive ?

Experimental production of Hyperons

 \blacktriangleright low energy (close to the threshold $\sqrt{s}_{\rm NN} \rightarrow \sqrt{s}_{thr})$ experiments allow to reach large densities

Au+Au

$$\blacksquare$$
 \bigcirc
 $\sigma_{prod.} + \sigma_{scat.}$
 density ~ $3\rho_0$

 p+Nb
 \blacksquare
 \bigcirc
 \bigcirc
 $\sigma_{prod.} + \sigma_{scat.}$
 density ~ ρ_0

 p+p
 \blacksquare
 \bigcirc
 $\sigma_{prod.} + \sigma_{scat.}$
 density ~ ρ_0

HADES - High Acceptance Di-Electron Spectrometer

See G. Agakishiev et al. EPJ A41 (2009) for details

- located in GSI Helmholtzzentrum for Heavy lon Research, Darmstadt, Germany
- fixed-target experiment
- SIS18, beams up to
 - 3.5 GeV for protons
 - 1.25 AGeV for Au
 - 0.6 GeV/c to 2 GeV/c for charged pions

- ▶ 85% of azimuthal coverage
- polar angle interval from 18° to 85°
- forward coverage of 0° to 7°
- momentum resolution 1 % to 4 %
- very efficient PID (i.e. kaons) via dE/dx, TOF

∧ reconstruction in HADES

- production in LH₂ target region
- reconstruction via proton- π^- decay products
- tracking in four layers of Multiwire Drift Chambers
- particle identification with dE/dx and momentum (magnetic field)

- ► cτ = 78.9 mm
- PV res = 3.8 mm
- SV res = 1.8 mm

Invariant mass and analysis chain

Several topological cuts are applied to purify the sample

- ► S = ~ 258k As
- ► S/B = 0.47

Conducted differential analyses

- P_t - y^{cms}
- ▶ p^{cms}-cos θ^{cms}

Cross-check analysis

Full phase-space

Kinematical distributions from data

INPC 2016, Adelaide, Australia

Kinematical distributions from data

Fit of the (π⁻,p) invariant mass distribution in each (p_t-y_{cms}) or (p_{cms}-cos θ_{cms}) bin → extraction of signal (see figures below).

Geometrical acceptance and reconstruction efficiency

Corrections procedure:

- 1. All channels are simulated with weights equal to their cross sections and anisotropy (SIM sample).
- 2. Further they are filtered with the HADES acceptance and efficiency (FSS sample)
- 3. $\mathcal{A} = FSS/SIM$ determines correction matrix
- 4. Data correction in each bin: $D^{corr} = D^{meas}/AE$

Normalization:

- Data are normalized to total proton-proton elastic cross-section.
 - A. Rustamov, AIP Conf. Proc. 1257, 736-740 (2010)
- The normalization uncertainty is ± 7.3 %.

Data corrected in such a way can be compared with 4π simulations (within the acceptance only).

Experimental data and production model $P^{cms} = \cos \theta^{cms}$

Experimental data and production model $P_{t-y^{cms}}$

Although model is based on solid experimental results from various exclusive channels, a few of them are based only on approximations:

- pKΣ⁰ production anisotropy (absent) was extrapolated from COSY measurement at 2.95 GeV beam energy.
- The Δ^+ channels were approximated with the measurements of the Δ^{++} channels: factor 3 from the isospin rule for the cross section, the same anisotropy.
- $\succ \Delta^+(\Delta^{++})Y^*$ cross section approximated with another HADES analysis, no anisotropy constrained.

HADES upgrade (to be ready in 2018):

- $\label{eq:electromagnetic Calorimeter} \mbox{(ECAL)} \mbox{reconstruction of } \Sigma^0 \to \Lambda + \gamma$
- Forward Detector (FD) bigger acceptance required by Δ⁺ channels

for $\cos \theta$ distribution

Experimental distribution

for $\cos \theta$ distribution

With simulation extrapolation

Data fully cover one hemisphere. We need to mirror the spectrum over $\cos \theta_{cms} = 0$ to cover full phase-space. Overlapping points are averaged with error weights.

for $\cos \theta$ distribution

for y distribution

for y distribution

With simulation extrapolation

Data fully cover one hemisphere. We need to mirror spectrum over $\cos \theta_{cms} = 0$ to cover full phase-space. Overlapping points are averaged with errors weights.

for y distribution

$\sigma(pp \rightarrow \Lambda + X)$ cross section extraction

- cross-section
 - \pm exp. statistical
 - \pm exp. syst. (corrections)
 - \pm exp. syst. (normalization)
 - \pm model extrapolation

simple average:

$$\sigma(\mathrm{pp} \to \Lambda + X) = 207.3 \pm 1.3 \ ^{+6.0}_{-7.3} \pm 8.4 \ ^{+0.4}_{-0.5} \ \mu b$$

cross-check analysis:

$$\sigma(\text{pp} \to \Lambda + X) = 201.9 \pm 4.1 \ ^{+7.6}_{-8.0} \pm 14.7 \ \mu\text{b}$$

INPC 2016, Adelaide, Australia

World data

$pp \rightarrow \Lambda + X$: comparison to world data

Summary

Cross section of the Λ production was estimated to:

$$\sigma(\text{pp} \rightarrow \Lambda + X) = 207.3 \pm 1.3 {}^{+6.0}_{-7.3} \pm 8.4 {}^{+0.4}_{-0.5} \ \mu\text{b}.$$

- ▶ Differential cross section has been determined \rightarrow significant anisotropy is found for the Λ production.
- Fotal Λ production model based on exclusive production channels is implemented for 3.5 GeV beam energy.
- Model accuratly describes experimental spectra in range $-0.6 < \cos \theta_{cms} < 0.6$ and for p > 500 MeV/c.
- But undershoots data in backward direction at $\cos \theta_{\rm cms} < -0.6$.
- ► Looking forward for the future experiments with ECAL and FD, also p+p.

HADES collaboration

Thanks to all HADES collaborators

Differential distributions of the model

Production model, all channels summed coherently

INPC 2016, Adelaide, Australia

R. Lalik

d²σ/dcosθ_{cm}dp_{cm} [1/MeV c⁻¹]

d²σ/dcosθ_{cm}dp_{cm} [1/MeV c⁻

Hunting for Λ in proton-proton reaction $_{\text{Motivation}}$

EPJ Web of Conf. 73 (2014) 05012

Hunting for Λ in proton-proton reaction $_{\text{Motivation}}$

