$\Lambda - p$ correlation in π^- -induced reactions at 1.7 GeV/c *

S. Maurus^{1,2}, L. Fabbietti^{1,2}, and the HADES collaboration¹

¹Physik Department, TUM, Garching, Germany; ²Excellence Cluster "Universe", Garching, Germany

World data for elastic $\Lambda - p$ scattering over a wide range of relative momenta are quite scarce and only available for small beam momenta with a integrated statistic in the order of 200 events [1]. For π^- -induced reactions the available data is even more limited [2,3]. In order to improve the theoretical description, new constraints are necessary to parametrize the cross sections. In this context a dedicated π^{-} + A (A = C, W) experimental campaign was performed at $p_{\pi} = 1.7$ GeV/c with the HADES detector (SIS18/GSI). The recorded data is analyzed in terms of the inclusive Λ yield and Λ -p correlation. For the reconstruction of the Λ in the inclusive spectra the charged decay channel ($\Lambda \rightarrow p\pi^{-}$, BR = 63.9%) has been examined. Applying topological cuts, an integrated yield of ~ 11 k Λ has been extracted with a purity of 93% ($\pi^- + W$) (Fig. 1). These extracted yields are further corrected for the limited efficiency and acceptance by means of simulations. A Boltzmann distribution has been employed to extrapolated the yield to the full momentum phase space.

After the Λ has been produced it can interact with the nuclear environment and eventually scatter elastically with a nucleon. Thus, events with a matching charge pattern $(\Lambda \to \pi^- p, K^0 \to \pi^+ \pi^-, p)$ are selected to obtain all kinetic observables. Based on a likelihood-method the particle species has been determined considering the specific energy-loss in the MDCs and velocity β . Since the selected pattern contains two π^- and p in the final state, an event hypothesis has to be applied to assign their corresponding mother particle (Fig. 2, $m_{\pi^+\pi^-} - m_{K^0}$ and $m_{n\pi^-} - m_{\Lambda}$). The best combination is selected by a simultaneous matching of the invariant mass to the nominal value within the detector resolution. This procedure leads to an extraction of ~6k events in the $\pi^- + W$ system. For a full description of all kinematic properties of the system the Λ before the scattering is reconstructed by the incoming π^- -beam and the outgoing K^0 .

References

- [1] Engelmann et al., Phys. Lett. B19, 715 (1966)
- [2] Alexander et al., Phys. Rev. Lett. 7, 348 (1961)
- [3] Crawford et al., Phys. Rev. Lett. 2, 174 (1959)

Figure 1: Invariant mass spectra of $\pi^- p$ pairs in $\pi^- W$ reactions after the topological have been applied. The signal is fitted with a double Gaussian and the background is described by a polynomial together with a Gaussian.

Figure 2: Correlation of the invariant mass spectra of $\pi^+\pi^-$ and π^-p for the event pattern $pp\pi^-\pi^-\pi^+$ in π^-W . The pole mass of Λ and K^0 is subtracted, respectively.

^{*} Work supported by BMBF 05P15WOFCA