Kaon and phi production in pion-nucleus reactions at 1.7 GeV/c*

A. Scordo¹, J. Wirth^{2,3}, L. Fabbietti^{2,3}, and the HADES collaboration

²Excellence Cluster "Origin and Structure of the Universe", 85746 Garching, Germany; ³Physik Department,

TU München, 85746 Garching, Germany; ¹INFN Laboratori Nazionali di Frascati, 00044 Frascati (Roma), Italy

The production and properties of open and hidden strange mesons (K^+, K^-, ϕ) in cold nuclear matter generated in pion-nucleus reactions $(\pi^- + A, A = C, W)$ at $p_{\pi^-} = 1.7$ GeV/c have been studied with the HADES setup (SIS18/GSI).

Of particular interest is the modification of the (anti-)kaon spectral function in nuclear matter which should be already apparent at saturation density [1]. While, for the kaon (K^+, K^0) the repulsive KN-potential has been investigated to some extent having a moderate strength (20 -40 MeV) [2, 3], the existing data on in-medium effects of the antikaon produced off nuclear targets are very scare [4]. Moreover, the situation of the antikaon is more involved, since the K^- can be absorbed in nuclear matter which should be driven by strangeness exchange processes on one $(K^-N \to Y\pi)$ or more nucleons $(K^-NN \to YN\pi)$. On contrary, K^+ does not undergo strong absorption processes and can be treated as a quasi particle within nuclear matter, providing stringent constraints on the production mechanism of strange hadrons. In this context, also the ϕ production and absorption ($\phi \rightarrow K^+K^-$, $BR \sim 48.9\%$) off light and heavy nuclear targets is studied.

Figure 1: Invariant mass distribution of charged kaons in $\pi^- + C$ reactions. The fit consists of two Gaussian for the ϕ signal together with the background described by a polynomial and Gaussian functions

Both charged kaons are identified by means of time-offlight (START/RPC/TOF) and momentum measurements as well as by the specific energy loss information in the drift chambers to enhance the signal to background ratio. The neutral ϕ is reconstructed employing the invariant mass of charged kaons $(M_{K^+K^-})$ (Fig. 1), which have been selected within a distinct velocity β range. In total about $4 \times 10^5 K^+$, $2 \times 10^4 K^-$ and $500 \phi (\pi^- + C)$ and $2 \times 10^5 K^+$, $1 \times 10^4 K^-$ and $300 \phi (\pi^- + W)$ were reconstructed, respectively.

Evidence on the K^- absorption is obtained on the basis of K^-/K^+ ratios in both nuclear environments (C, W) as a function of four different kinematic observables (p, θ, p_T, y) . Figure 2 shows the ratios as a function of momentum. Furthermore they are compared the expected ratios without absorption based on existing and extrapolated cross-sections (Fig. 2 gray line). A clear K^- disappearance for a higher effective density is observed, which is even more evident for low momenta. Moreover the ratios yield to a K^- absorption in all four kinetic observables.

Figure 2: K^-/K^+ ratio in $\pi^- + W$ collisions compared to $\pi^- + C$ as a function of momentum. The gray line reflects the expected double ratio without absorption.

References

- J. Schaffner et al., "In-medium production of kaons at the mean field level", Nucl. Phys. A625: p. 325 – 346 (1997)
- [2] M. L. Benabderrahmane et al., "Measurement of the inmedium K0 inclusive cross section in π^- -induced reactions at 1.15 GeV/c", Phys. Rev. Lett. 102, 182501 (2009)
- [3] G. Agakishiev et al.: "Medium effects in proton-induced K0 production at 3.5 GeV", Phys. Rev., Bd. C90: p. 054906 (2014)
- [4] W. Scheinast et al., "First observa-tion of in-medium effects on phase space distributions of an- tikaons measured in proton-nucleus collisions," Phys. Rev. Lett. 96, 072301 (2006)

^{*} Supported by the DFG cluster of excellence "Origin and Structure of the Universe and SFB 1258"