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Zusammenfassung

Innerhalb des letzten Jahrzehnts führten theoretische Modelle, basierend auf einem
attraktiven Potential zwischen K− und Nukleonen, zur Vorhersage tiefgebundener
kaonischer Cluster [YA02]. Mehrere Kollaborationen berichteten über die mögliche
Entdeckung des leichtesten kaonischen Clusters ppK− [FIN05; Y+10].
Zur Untersuchung dieser hypothetischen Zustände wurde 2009 am ‘Helmholtzzentrum
für Schwerionenforschung’ (GSI) ein Experiment mit dem Fixed-Target Spektrometer
FOPI durchgeführt, bei dem Protonen bei einer Energie von 3.1 GeV zur Kollision
gebracht wurden. Das Ziel dieses Experiments, welches in der folgenden Arbeit als
‘pp Experiment’ bezeichnet wird, ist die Rekonstruktion von ppK− über ihren Zerfall
in p und Λ.
Im Rahmen dieser Arbeit wird die Entwicklung eines kinematischen Refits für die
exklusive Analyse der Reaktion pp → pK+Λ präsentiert, welcher eine Reihe von
physikalischen Zwangsbedingungen mit und ohne Berücksichtigung von Vertices
beinhaltet. Kinematische Refits haben sich in der Analyse von elementaren Teilchen-
reaktionen als bewährtes Hilfsmittel etabliert, um die Massenauflösungen von kur-
zlebigen zerfallenen Teilchen zu verbessern, welche mittels “Invariant Mass” oder
“Missing Mass” Methode rekonstruiert werden. Zudem kann mit ihrer Hilfe der Anteil
von Untergrundreaktionen reduziert werden. In dieser Arbeit werden sowohl die
theoretischen Grundlagen, als auch die Anwendung des kinematischen Refits auf
verschiedene Simulationen unter Verwendung unterschiedlicher Kombinationen von
Zwangsbedingungen beschrieben. Des Weiteren wird eine systematische Analyse
der Auswirkungen des Refits auf Untergrundreaktionen, sowie erste Ergebnisse der
Anwendung des kinematischen Refits auf experimentelle Daten, vorgestellt.
Zusätzlich zur Untersuchung der pK+Λ Reaktion wird die Analyse elastischer pp
Kollisionen präsentiert. Der kinematische Refit wird hierbei auf die Daten angewendet
um den Anteil von Untergrundreaktionen effizient zu reduzieren. Mit Hilfe der iden-
tifizierten elastischen Protonen können verschiedene Detektoreffizienzen berechnet,
sowie die Orientierung des Protonenstrahls überprüft werden.





Abstract

During the last decade, the existence of an attractive potential between K− and
nucleons lead to the prediction of deeply bound kaonic nuclear clusters [YA02].
Experimental results on the search for the lightest representative ppK− were reported
by various collaborations [FIN05; Y+10].
In order to contribute to the investigation of the possible existence of this predicted
state, an experiment measuring p + p reactions at 3.1 GeV with the fixed target
spectrometer FOPI at the ‘Helmholtzzentrum für Schwerionenforschung’ (GSI) in
Darmstadt was performed in 2009. The goal of this experiment, which is referred to
as ‘pp experiment’ throughout this thesis, is the analysis of ppK− via its decay into
p and Λ.
This work presents the development of a kinematic refit for the exclusive analysis
of the reaction pp → pK+Λ, providing various vertex and non-vertex constraints.
Kinematic fitting is a well-established tool in the analysis of elementary particle
reactions to improve the mass resolutions of intermediate particles reconstructed via
the invariant or missing mass technique and to reduce background reactions. The
theoretical principles as well as the effect of its application to various simulations
using different constraint conditions are discussed in this thesis. Furthermore, a
systematic study of the behavior of refitted background is performed and first results
of the application to experimental data are presented.
Additionally to the investigation of the pK+Λ reaction, the analysis of elastic p+ p
reactions is shown. For an effective background reduction, the kinematic refit is
applied to the data. The selected elastic protons are exploited to determine the
detector efficiencies and to validate the beam alignment.
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1 Theory

The universe reveals its innermost structure and coherence through fundamental
symmetries, that govern the laws of nature. Connected to the concept of conserved
quantities via the Noether’s theorem, most of modern physics is based upon the
implications of symmetry transformations acting on its underlying equations.
The interaction between the constituents of hadronic matter, quarks and gluons,
mediated by the strong force, is described within the theoretical framework of quan-
tum chromodynamics (QCD). It is based on the non-abelian gauge group SU(3)C ,
associated with the color charges of strong interaction. The non-abelian character
of this gauge theory leads to interesting effects, such as gluon-gluon interaction,
color confinement and asymptotic freedom. However, due to the increasing of the
strong coupling constant αS with decreasing transferred momentum, perturbative
QCD is limited to the high energy regime. For the description of low energy effects
like hadronization, non-perturbative methods as lattice QCD or chiral perturbation
theory (ChPT) have been applied with great success.
Turning towards very high energies, asymptotic freedom implies that at high tem-
peratures or densities, the relevant degrees of freedom are quarks and gluons rather
than hadrons. The transition from confined hadrons to a deconfined phase, the so
called quark gluon plasma, was confirmed by lattice QCD calculations [FH11]. This
extreme state of matter, which composed the universe for a short time after the big
bang, might exclusively occur under very special conditions in nature (e.g. in the
center of neutron stars or during supernovae) and has to be produced in heavy ion
collisions in the laboratory.
In order to achieve a fundamental understanding of these effects, and therefore finally
of the matter that constitutes our nature, the phase diagram of nuclear matter (Figure
1.1) has been investigated extensively during the last decades. Its properties are
quantitatively described by the equation of state (EOS) of nuclear matter, which
determines the physical evolution of the system1 by relating the state variables
temperature T , density ρ and energy per baryon ε

A [Uhl03].
With energies of 2 AGeV, that are achieved with the SIS18 synchrotron, the experi-
ments at the GSI contribute to this research at moderate temperatures and densities.

1 The recent measurement of a 2 solar mass neutron star sets narrow constraints on the EOS
of strong interacting matter, rejecting most of the theoretical models which predict exotic
non-nucleonic matter in the center of neutron stars [DPR+10; Röt11].
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2 1 Theory

Figure 1.1: Phase diagram of the QCD. The phase boundary between confined hadronic
matter and the quark gluon plasma is illustrated by the yellow band. Analog to the phase
diagram of water, a critical point exists, beyond which the phase boundary disappears
and the transition happens continuously [Lor08].

1.1 In-medium modification of hadrons
A further topic of research in this field is the modification of hadron masses in hot
and dense nuclear matter [BR91; CRW96; SBMJ97; PSSG99].
Due to the small masses of up- and down-quarks, an approximate SU(2)F sym-
metry is realized in QCD, which mixes the two quark flavors. The corresponding
Lagrangian contains left- and right-handed terms of the quark fields, which transform
independently under SU(2)F . At low temperatures, this so called chiral symmetry
is spontaneously broken by the chiral quark condensate 〈qq̄〉, a suprafluid phase of
quark-antiquark pairs constituting the QCD vacuum [PS95]. The associated Gold-
stone bosons are the three pions with finite masses of around 140 GeV/c2, caused
by explicit chiral symmetry breaking due to the small up- and down-quark masses2.
The pion mass is related to the quark masses mu and md and to the expectation
value of the chiral condensate via the Gell-Mann-Oakes-Renner relation [Koc96]

m2
π = −mu +md

2f2
π

〈0|uū+ dd̄|0〉 (1.1)

where fπ is the pion decay constant. According to this equation, the pion mass
directly depends on the explicit and spontaneous breaking of chiral symmetry.

2 In case of an approximate SU(3)F symmetry including the strange-quark, the associated Goldstone
bosons are pions and kaons. The latter possess higher masses of approximately 500 GeV/c2, due
to the higher mass of the strange-quark.
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Figure 1.2: Chiral condensate as a function of the baryon density ρ and the temperature
T . The black dot indicates the position of normal nuclear matter. The colored fields mark
the regions, where the matter is investigated by different experiments [Nöh98; LKW92].

At high temperatures and densities, the chiral symmetry is expected to be restored
[Mic06], leading to a vanishing chiral condensate 〈qq̄〉. This situation is illustrated
in figure 1.2, where the chiral condensate is shown as a function of the temperature
T and the baryon density ρ [LKW92]. Different theoretical models predict a close
relation between the chiral condensate and the in-medium properties of hadrons,
such as the masses3 or spectral functions [BR91; HL92]. Therefore, even though the
quark condensate itself is not directly accessible in the experiment, the observation of
changes in these observables could be an indirect method to explore the restoration
of chiral symmetry [Nöh98].
Other theoretical models based on chiral symmetry frameworks predict a mass
modification for charged kaons in the medium [SBMJ97; Cha01]. As illustrated in
figure 1.3, according to these predictions, K− feel an attractive potential in the
nuclear environment, whereas the K+ potential is slightly repulsive. The strength
of the effects increases with the baryon density ρ. The change of the kaon masses
in the nuclear medium should result in modified production probabilities for K−
and K+. Indeed, several experimental results point towards a kaon modification
based on in-medium potentials [Cro98; HOA03]. However, additional investigations
are necessary in order to evaluate the properties of these potentials, especially the
K−N potential. The difficulties for K− arise from the presence of further production
mechanisms below the KN threshold, in particular the so called strangeness exchange

3 The predicted effect of chiral symmetry restoration on the pole masses of light vector mesons
(especially the ρ meson with its strong coupling to the π+π− channel) is criticized in [CRW96]
due to the possibility of modifications of the pion propagation in a hot and dense environment.
Indeed, experimental results of the NA60 experiment contradict the mass shift of the ρ meson,
whereas the broadening of its spectral function is confirmed [D+07; NA609].
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Figure 1.3: Effective mass of K+ and K− as a function of the baryon density ρ. The
colored regions summarize the results of various theoretical calculations [Stu01; SBMJ97].

channel [FS+09; Sch08].

π Y −→ K− N (1.2)

Here, Y stands for the hyperons Λ and Σ.
Another problematic issue results from the fact that the invariant mass spectroscopy
of hadrons in nuclear matter delivers the respective energy states, suffering from
collisional shifts and broadening, rather than the scalar masses themselves [YA99]. A
recent method to overcome this problem is the production of deeply bound states
containing the respective hadron. From the measured binding energy, the hadron-
nucleon potential and therefore the scalar hadron mass can be deduced subsequently
[YA02]. A first successful application of this method was the estimation of the π−
mass shift in 205Pb and 207Pb via the measurement of narrow 1s and 2p states
[Y+96; Y+98; WBW97; I+00; G+02].

1.2 The Λ(1405)
The existence of an attractive potential between K− and nucleons implicates the
possible formation of K−N bound states. Indeed the well-known Λ(1405) resonance is
associated with a bound K−p system. Its properties are listed in table 1.1 [Par10]. It

Mass Width Strangeness Spin Isopin Parity

1406 MeV/c2 50 MeV/c2 -1 1
2 0 −

Table 1.1: Properties of the Λ(1405).
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Figure 1.4: Illustration of the coupled channels dynamics with two channels 1 and
2. Baryons are represented by solid, mesons by dashed lines. The black sphere stands
for T eff = T11, shaded spheres represent V eff and white spheres denote the single
channel scattering matrix T single22 . The effective scattering matrix T eff = T11 is shown
by the upper row. The dynamics of channel 2, mediated via T single22 , is absorbed into
the effective interaction V eff , which only acts in channel 1 (middle row). Hence, the
effect of channel 1 on the dynamics of channel 2 is neglected (no channel 1 loops appear
in T single22 ) [HW08].

is located around 30 MeV/c2 below the K̄N and 75 MeV/c2 above the πΣ threshold.
Therefore, the Λ(1405) can only be directly observed via its decay into πΣ.
In general, the dynamics of hadrons at low energies can be successfully described
within the framework of chiral perturbation theory. ChPT is an example of an
effective field theory, where the symmetries and symmetry breaking mechanisms of
the QCD are incorporated [BNW05]. However, its perturbative application fails in
the vicinity of resonances due to rescattering effects [OM01]. Hence, the dynamics of
the K−p channel cannot be studied with ChPT due to the existence of the Λ(1405)
right below threshold. Instead, the Λ(1405) is described to be dynamically generated
as an I = 0 K−p quasi-bound state embedded in a strongly interacting πΣ continuum
[HW08]. The theoretical method is based on the combination of SU(3) ChPT with
non-perturbative coupled channels techniques [BNW05; KSW95; OR98]. In the
coupled channels approach, the meson-baryon scattering matrix4 Tij is calculated via
the self-consistent Bethe-Salpeter equation

Tij(
√
s) = Vij(

√
s) + Vil(

√
s)Gl(

√
s)Tlj(

√
s) (1.3)

where Gl(
√
s) is a diagonal matrix collecting the loop integrals in each meson-baryon

channel and Vij(
√
s) is the model dependent scattering amplitude derived from the

SU(3) effective Lagrangian. It depends on the explicit interaction terms taken into
account in the meson-baryon Lagrangian. The effect of different choices for Vij(

√
s)

is discussed in [BNW05]. In case of two contributing channels (e.g. K̄N and πΣ),

4 The absolute value of the scattering matrix is directly connected to the differential cross section
via Fermi’s golden rule: dσij

dΩ
∝ |Tij |2.
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Figure 1.5: Pole positions of the K̄N scattering matrix T eff (
√
s) for single channel,

double channel (2) and full channel (4) (i.e. including non-diagonal K̄N ↔ Σπ couplings)
models in the complex

√
s plane [HW08].

equation 1.3 is solved by incorporating the dynamics of channel 2 into an effective
interaction V eff , which exclusively acts in channel 1. The contributions to the
effective scattering matrix T eff are illustrated in figure 1.4.
In [OM01] and [JOO+03] it is argued that the Λ(1405) is a superposition of two
nearby poles with equal quantum numbers in the complex

√
s plane5. The pole

positions of the Λ(1405) for different coupled channels models are shown in figure 1.5.
According to the calculations, the two poles couple with different strengths to the
K̄N and πΣ channels. Whereas the pole close to the real axis z1 strongly couples to
the K̄N channel, the second pole z2, which is associated with the πΣ channel, has a
large imaginary part, resulting in a large width ΓR. Hence, the Λ(1405) is described
as a K−p bound state embedded in a πΣ continuum.
Due to the different coupling strengths of the two poles, the Λ(1405) peak position in
the invariant mass (π−, Σ+) spectrum depends on the initial reaction. As illustrated
in figure 1.6, the Λ(1405) peak is located at the nominal value of 1405 MeV/c2 for
the πΣ → πΣ channel (dashed line) but sits at 1420 MeV/c2 for the K̄N initiated
reaction (solid line) [JSI+10]. Therefore, the resonance structure of the invariant
mass (π−, Σ+) spectrum cannot be associated with the Λ(1405) as a K−p bound
state by implication [HW08].
Since the direct decay of the Λ(1405) into the K−p state cannot be measured, the K̄N
spectral function has to be determined by indirect procedures, such as multiple fits to
scattering data above threshold [BNW05] or the measurement of the energy shift and

5 In general, resonances are expressed as poles in the scattering matrix, where the real and imaginary
part correspond to the mass mR and the half width ΓR/2 of the resonance, respectively [HJ12].



1.3 Kaonic nuclear cluster 7

Figure 1.6: Invariant mass (π−, Σ+) spectrum from [Hem84] with fitted spectral
functions of the channels K̄N → πΣ (solid line) and πΣ → πΣ (dashed line) [JSI+10].

broadening of atomic states in kaonic hydrogen [Z+05; O+12]. These measurements
at threshold and above set constraints for the extrapolation of the K̄N spectral
function into the sub-threshold region.
Recently, the Λ(1405) was investigated in elementary p+ p reactions via its decay
into the neutral π0Σ0 channel [FE10; Epp09] and for the first time into the charged
πΣ channels [S+11; Sie10] with the HADES spectrometer at the GSI.

1.3 Kaonic nuclear cluster

Figure 1.7: Predicted structure of K−p and K−pp according to [YA02].

According to the theoretical predictions, the Λ(1405) is dominated by the z1 pole
coupling to the K−p channel [HW08]. Therefore, this K−p state could act as a
doorway for the production of kaonic nuclear cluster by catching additional nucleons.
The lightest representative of kaonic nuclear clusters, the ppK−, was predicted 2002
in [YA02] with a binding energy of 48 MeV. The structure of the ppK− emerges from
a K̄N interaction, which is deduced in a semi-empirical model such to reproduce
the binding energy BΛ(1405) = 27 MeV and width ΓΛ(1405) = 40 MeV of the Λ(1405).
Figure 1.7 illustrates the predicted structures of Λ(1405) and ppK− with the corre-
sponding rms distances.
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Figure 1.8: Molecular structure of the ppK−. Left: Projected density distributions of
K− in the ppK−. The “atomic” part is shown by the red, the “exchange” part by the
green distributions. The protons are indicated by the blue dots with a fixed distance of
2 fm. Right: Corresponding K− contour distribution [YA07].

This simple model assumes a single pole character of the Λ(1405), neglecting the
πΣ → πΣ coupling predicted by the coupled channels approach. In [HW08], this
phenomenological model is criticized, since within the full framework of chiral dynam-
ics, the K−p amplitude of the Λ(1405) has a maximum at

√
s ≈ 1420 MeV/c2 with

an associated binding energy of 12 MeV (see figure 1.6). This value is supported by
very recent calculations based on realistic NN potentials and sub-threshold energy
dependent chiral K̄N interactions, discussed in [BGL12].
However, in [YAOW10] it is argued that the z2 pole coupling to the πΣ amplitude
is irrelevant to any peak structure in the mass region between the πΣ and K̄N
thresholds. Therefore, an effective single pole nature of the Λ(1405) associated with
the K−p bound state is concluded.
Besides this phenomenological ansatz, an independent approach based on three-body
K̄NN−πΣN coupled channel Fadeev calculations predicts a ppK− with very similar
properties [SGM07].
An interesting feature of the predicted ppK− is that the K−p substructure, though
modified, persists in the nuclear bound system. This situation resembles a molecular
type binding, similar to the hydrogen molecule, where the K− traverses between
the two protons producing “strong covalency” through the strongly attractive K̄N
interaction [YA07]. This situation is illustrated in figure 1.8. The left picture shows
the projected density distributions of K− in K−pp for a fixed p-p distance. The K−
distribution, which is centered around the two protons, is composed of an “atomic”
part (red) and an “exchange” part (green), analog to the Heitler-London mechanism
of molecular binding. The right picture shows the corresponding contour distribution
of K−.

1.3.1 Experimental results
Experimental results on the existence of kaonic bound states were published by the
FINUDA collaboration [FIN05]. In the experiment, K− from the decay of Φ mesons,
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Figure 1.9: FINUDA data showing the invariant mass (p, Λ) spectrum. The distribution
associated with the ppK− is located between 2210 MeV/c2 and 2320 MeV/c2 with a
peak at 2256 MeV/c2. The inset shows the acceptance corrected spectrum [FIN05].

which were produced in e+ e− collisions at the DAΦNE accelerator, were stopped in
different nuclear targets (6Li, 7Li, 12C, 27Al and 51V). The underlying reaction reads
as follows.

K− + AZ −→ A−2(Z− 2) + Λ+ p (1.4)

Figure 1.9 shows the invariant mass distribution of the Λ and the p produced in the
stopping reactions after the subtraction of background. The spectrum has a peak at
2256 MeV/c2 which was associated with the ppK− via its decay into Λ and p (see
section 1.3.2). However, this interpretation was criticized in [MORT06], where based

(a) (b)

Figure 1.10: Cross sections for the formation of ppK− in strangeness transfer reactions
(a) and in pp collisions (b) [YA07]. In these pictures, Λ∗ denotes the Λ(1405).
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(a) (b)

Figure 1.11: DISTO missing mass K+ deviation spectra for large angle (a) and small
angle (b) protons [Y+10].

on simulations the structure was explained as a consequence of final state interaction
of the particles produced in nuclear K− absorption. In [YA07] the possible formation
of the ppK− is explained via a strangeness transfer reaction (equation 1.4 with a
Λ(1405) instead of a Λ) and the subsequent fusion of the Λ(1405) and the proton.
Figure 1.10a shows a typical cross section for the formation of ppK− in strangeness
transfer reactions. Due to the small momentum transferred in this reaction6, the
production of ppK− is suppressed compared to the quasi-free production of a Λ(1405)
together with a proton.
Another possibility to produce kaonic nuclear cluster is the formation in proton-proton
collisions via the following reaction.

(R.1)p + p −→ ppK− + K+

Exploiting this production mechanism at a beam energy of 2.85 GeV, the DISTO
collaboration reported on the possible discovery of the ppK− in their missing mass
K+ and invariant mass (p, Λ) spectra [Y+10; Y+11]. Figure 1.11 shows the deviation
spectra of the missing mass K− distribution for large proton angles (a) and small
proton angles (b). The observed resonance has a mass of 2265 MeV/c2 with a
corresponding binding energy of 105 MeV/c2.
The production of ppK− in pp collisions is predicted to be accompanied by a large
momentum transfer [YA07]. Therefore, the probability of a fusion of Λ(1405) and p

6 A small momentum transfer causes the produced particles Λ(1405) and p to be emitted with a
large opening angle. Hence, the probability of a subsequent ppK− formation is small.
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is larger compared to the strangeness transfer reaction. This is illustrated by figure
1.10b, where a dominance of ppK− formation compared to the quasi-free production
in the cross section is visible. Hence, pp collisions are well suited for the investigation
of the possible formation of kaonic nuclear clusters.
Recently, the HADES experiment measured pp reactions at a beam energy of 3.5 GeV,
motivating an ongoing investigation of the production of ppK− [SB12].

1.3.2 Kinematics of the pp reaction
In [YA07], kinematical calculations based on reaction R.1 with a beam energy of
3 GeV were performed. At this energy, the production cross section for ppK− has
a maximum value, whereas it is expected to be small for background reactions,
according to [IKMW08]. Figure 1.12 shows the kinematical distributions of K+ and
ppK− for a simulation of reaction R.1. The pictures show that the K+ are emitted
under polar angles θKlab smaller than 50◦ in the laboratory frame. The heavier ppK−
are emitted in a narrow forward cone of θXlab < 10◦.
According to [IKMW08], the ppK− decays into the following three channels.

p + p −→ ppK− + K+

(R.2)50%−→ Λ + p

63.8%−→ p + π−

(R.3)−→ Σ0 + p

−→ Λ + γ

−→ p + π−

(R.4)−→ Σ+ + n

−→ π+ + n + n

The analysis in context of the pp experiment performed with the FOPI spectrometer
concentrates on the investigation of the ppK− via its decay into Λ and p (B.R. =
50 %), where the Λ subsequently decays into p and π− (B.R. = 63.8 %) with a mean
free path of cτΛ ≈ 7 cm (reaction R.2). Since this final state only contains charged
particles (p,K+,p,π−), the intermediate Λ and finally the ppK− can be reconstructed
via the invariant or missing mass technique (see section 2.7.3).
Due to the predicted high laboratory momenta of the ppK− (pppK− ≈ 3 MeV/c),
the decay products Λ and p are emitted in forward direction, with corresponding
polar angles of around 14◦ with respect to the ppK− direction. Hence, the analysis
of reaction R.2 requires an identification of protons and pions in forward direction
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Figure 1.12: Kinematic plots for K+ and ppK− (here denoted as X) produced in
reaction R.1 at a beam energy of 3 GeV [YA07].

(θlab < 30◦), whereas the primary K+ are measured at larger angles θKlab < 50◦.
Due to these requirements, the pp experiment was performed with the FOPI spec-
trometer at the GSI. It is capable of measuring particles at small polar angles with
an azimuthal acceptance of 4π and enables an excellent kaon identification within
polar angles of 30− 50◦ with its MMRPC detector (see chapter 2). Moreover, the
SIS18 accelerator of the GSI facility delivers proton beams with the necessary energy
of more than 3 GeV.

1.4 N ∗ resonances
Besides the investigation of the predicted ppK−, the study of the pK+Λ final state
can additionally deliver information about other possible production mechanisms in
elementary particle reactions. In case of the reaction

(R.5)p + p −→ p + K+ + Λ

three different production mechanisms are possible, which are illustrated in figure 1.13.
The two left pictures show the production of the pK+Λ final state via non-resonant
meson exchange7, whereas the right picture illustrates the situation, where an in-
termediate N∗ resonance, e.g. in the π0p system, is produced, which subsequently

7 In principle, resonances could also be involved in the first K exchange mechanism, however, up
to now no resonant states in the K+p system are known [SW+10].
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decays into Λ and K+. Since the sub-reaction π0p→ K+Λ has a high cross section
for intermediate N∗ production8, this reaction mechanism is likely to be of major
importance for proton-proton induced hyperon production [SW+10; SPM08].
Indeed, experimental results published by the COSY-TOF collaboration indicate a
significant contribution of N(1650), N(1710) and N(1720) resonances to reaction
R.5 at beam energies of around 2.8 GeV [E+10; SW+10]. By comparing the different
resonance strengths at various beam energies, an energy dependence of the single N∗
contribution strengths can be deduced. This dependence is shown in figure 1.14. The
red diamonds represent the N(1650) strengths, the combined strengths of N(1710)
and N(1720) are shown by the blue squares. The dashed curves indicate the fits to
the data points and the colored bands visualize the 3σ error bands of the fits to the
contribution strengths [E+10]. The plot shows a diminishing of the relative N(1650)
contribution with increasing beam energy, whereas the influence of the N(1710) and
N(1720) resonances increases.
Extrapolating to the beam energies of the pp experiment predicts a dominant con-
tribution of the N(1710) and N(1720) resonances to the production of the pK+Λ
final state compared to the N(1650), which is likely to play a minor role. However,
also resonances with higher masses such as the N(1900) could be produced at these
energies. Since the occurrence of intermediate N∗ resonances has a considerable
impact on the angular, momentum and mass distributions of the pK+Λ tracks, the
investigation of the ppK− inevitably requires a basic understanding of the underlying
reaction processes. However, also besides their role in the ppK− analysis, the study of
intermediate N∗ resonances in the pK+Λ channel could provide further information
about the fundamental mechanisms, which govern elementary particle reactions.

8 The production of intermediate ∆∗ resonances in this reaction is forbidden due to isospin
conservation.
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Figure 1.13: Production mechanisms for the pK+Λ final state including non-resonant
strange (left) and non-strange (middle) meson exchange. The right picture illustrates
the resonant production via an intermediate N∗ resonance. The Λ hyperon is denoted
by Y [SW+10].

Figure 1.14: Contribution of the N(1650) resonance compared to the sum of N(1710)
and N(1720) as a function of the beam momentum [E+10].
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Figure 2.1: Schematic view of the FOPI spectrometer with its sub-detector systems
[RHK11].

The FOPI detector system is a fixed target experiment located at the ‘Schwerio-
nensynchrotron’ SIS18 of the ‘Helmholtzzentrum für Schwerionenforschung’ GSI in
Darmstadt [Ryu09]. It is used to study the properties of nuclear matter at moderate
temperatures and baryon densities [RHK11]. The name FOPI is an acronym for
FOur Pi, which indicates the spectrometers capability of detecting charged particles
within a solid angle of almost 4π.
The SIS18 synchrotron has a circumference of 213 m and a magnetic rigidity of
18 Tm. It can deliver heavy ion beams with energies up to 2 AGeV and proton beams
with 4.5 GeV maximum energy, corresponding to a momentum of 5.4 GeV/c. The
accelerated particles are led to the experiment, where they collide with a target.
In order to investigate the properties of the created nuclear matter, it is necessary
to measure the particles which are produced in the reaction process and their decay
products [Mün08; Ber09]. At the same time, it is not only important to identify
the particles, but also to detect their characteristics as e.g. momentum, energy or
phase space distribution. For this purpose, the FOPI spectrometer is constructed in

15
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a modular design (Figure 2.1), where the different sub-detectors specifically measure
certain particle observables [Rit95]. The tracks of charged particles are reconstructed
by the two drift chambers CDC and HELITRON. Together with a homogeneous
magnetic field of 0.6 T, which is produced by the large superconducting solenoid
magnet surrounding the drift detectors, the momentum and the charge polarity of
the particles can be calculated [Kim04]. Combining the particles trajectories with
the information delivered by the time-of-flight (TOF) detectors, which are located
inside the solenoid magnet (Barrel and RPC) and downstream (PLAWA and ZDC),
allows to determine the velocity.

2.1 Tracking detectors
FOPI uses drift chambers as tracking detectors. Drift chambers resemble ordinary
MultiWire Proportional Chambers (MWPC), which consist of alterning planes of
parallel proportional wires, placed in a gas volume between two cathodes. Charged
particles traversing the gas ionize the gas atoms, creating electron-ion pairs. The
electrons drift towards the anode wires, accelerated by an electric field, which is
established by the negatively charged cathodes and the positively charged anode
wires. Due to the large field gradient in the vicinity of the wires, the electrons gain
enough energy to further ionize the gas, resulting in a local charge avalanche. The
charges created in this avalanche induce a signal on the neighboring signal wires,
which is proportional to the energy of the detected particle.
In drift chambers, additionally the drift time of the primary electrons in the gas
volume is measured, to determine the spatial position of the particle, leading to an
improved spatial resolution and a reduced number of readout channels due to a larger
wire spacing. This requires a well known relation between the distance of the created
electrons and the drift time, which is guaranteed by additional field wires in order to
avoid regions of low electric field [Leo94; Ket10].

2.1.1 CDC
The cylindrical shaped Central Drift Chamber (CDC) is the main tracking detector
of the FOPI spectrometer. Its outer cylinder has a length of 2 m and a diameter of
1.8 m. The length of the inner cylinder is 80 cm with a diameter of 30 cm, leading to
conical end caps on both sides (see Figure 2.2) [Ryu09; Kut99].
In the xy plane, the CDC is divided into 16 sectors, each of them separated by 252
cathode wires (125 µm diameter) and containing 61 field wires1 (125 µm diameter)
and 60 signal wires2 (20 µm diameter), all of which are aligned parallel to the beam
axis [Kim04; Ben07].
The gas composition of 88% Argon, 10% Isobuthane and 2% Methane leads to
an electron drift velocity of 4 cm/µs, nearly independent of the drift field and to a

1 Also referred to as potential wires.
2 Also referred to as sense wires.
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Figure 2.2: Cross sections of the CDC [Ber09].

momentum resolution of 7% to 12% [Ben07; Mün08]. Applying a voltage of −15 kV to
the cathode wires generates a drift electric field of about 800 V/cm, which accelerates
the primary electrons generated by an incident charged particle towards the signal
wires, where the avalanche formation occurs and where the charges are collected. In
order to provide an electric field with a 1

r behavior around the grounded signal wires,
a voltage of −1275 V is applied to the field wires [Ben07].
The flight path of the traversing particle is characterized by various hitpoints in the
CDC. The position of the hitpoints in the xy plane is determined by the location
of the sense wires and the drift time of the electrons. The z component can be
reconstructed with the charge division method3 by reading out both ends of the
signal wires, which have a resistivity of 500 Ω/m [Rit95].
Drift chambers measure surfaces of constant drift time around the signal wires, which
introduces a left-right ambiguity with respect to the wires within a readout plane.
Each hitpoint has a mirror hit on the other side of the wire plane. In order to
avoid those ambiguities, the wire planes are tilted by 8◦. The mirror tracks can be
identified and the corresponding hit points discarded, since they do not originate
from the target. In addition, the wires are alternately staggered by ±200 µm to
further improve the identification of mirror tracks and to maintain electrical stability

3 The ratio of the charges collected on the left and right ends of the signal wire QL and QR is
given by QL

QR
= z

L−z , where L is the wire length and z the distance of the hit to the left end along
the wire [Kim04].
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[Rit95; Kre97].
The CDC has a spatial secondary vertex resolution of 0.5 cm in the xy plane and
2 cm in the z direction. It covers a polar angle of 27◦< Θ <113◦ and an azimuthal
angle of 2π [Ber09].

2.1.2 HELITRON

Figure 2.3: Sketch of the HELITRON drift chamber [Har03].

The second drift chamber of the FOPI spectrometer for the tracking of charged
particles in forward direction is the HELITRON (Figure 2.3) [Ryu09]. It is cylindrical
shaped with an inner diameter of 42 cm, an outer diameter of 198 cm and 60 cm length,
covering polar angles of 4.5◦< Θ <27◦ with full azimuthal acceptance [Kre97; Mün08].
The name HELITRON originates from the helix trajectory of charged particles in
the solenoidal magnetic field 4.
The drift chamber is divided into 24 sectors, where each sector contains 54 field wires
(125 µm diameter) for field shaping and 53 signal wires (50 µm diameter) for charge
collection [Ryu09]. In contrast to the CDC the field and signal wires are orientated
perpendicularly to the beam axis, running radially outward, to accommodate the
helix shaped flight path of the measured particles. The homogeneous drift field of
750 V/cm is generated by a drift voltage of −12.3 kV and a voltage of −1.6 kV applied
to the field wires [Har03]. Analogous to the CDC, the signal wires are staggered
for the identification of mirror tracks and read out at both ends, to provide the
radial spatial component of the hits via charge division with a resistivity of 1 kΩ/m
[Ryu09; Har03]. The gas mixture of 88% Argon, 10% Isobuthane and 2% Methane is
the same as in the CDC. The momentum resolution of the HELITRON is around 7%
[Mün08].
Normally the HELITRON cannot be used for the reconstruction of secondary vertices,

4 The HELITRON is placed at the end of the solenoid magnet where the magnetic field starts to
become inhomogeneous [Kre97].
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due to the large distance of the detector to the target. In this experiment, an
additional hitpoint close to the target is delivered by the silicon based Λ-Trigger
SiΛVio (see section 2.5), which enables the reconstruction of secondary vertices in
the forward direction [Ber09].

2.2 Time of flight detectors
The FOPI spectrometer includes several detectors for the measurement of the flight
time of the particles traversing the drift chambers. The flight time is given by the
difference of a stop signal, delivered by the time of flight detectors, which are placed
behind the drift chambers, and a start signal, provided by a start counter, placed
right inside the beam in front of the target (see section 2.3.1). Together with the
reconstructed flight path length and the momentum, this information can be used to
identify the particles (see section 2.7.2) [Ber09].
Furthermore, since they are very fast, the time of flight detectors are used to create
a trigger signal (LVL1), which starts the data acquisition during the experiment (see
section 2.6). The centrality of the collision can be determined via the hit multiplicity
[Mün08].

2.2.1 Plastic Barrel
The Plastic Barrel detector surrounds the CDC and consists of 180 plastic scintillator
strips, aligned parallel to the beam axis with a length of 2.4 m. 6 single strips are
combined to one module, respectively [Har03]. The Barrel covers a polar angle of
50◦< Θ <117◦ and the full azimuthal angle, except for two holes of 11◦ due to the
mounting structure of the CDC [Ber09].
Charged particles crossing the plastic scintillator, excite the organic material, which
deexcites through the emission of luminescent light. Via total reflexion, this light is
guided through the scintillator, which is transparent for its own emitted radiation5.
The scintillators are read out on both ends via photomultipliers, which convert the
photons into an electric current. Additional to the time of flight information (in
combination with the start signal), the plastic strips deliver an extra hit, whose
z component is defined by the time difference between the two photomultipliers
[Ryu09].
In the pp experiment, the time resolution of the Plastic Barrel varies between 300 ps
and 400 ps, dependent on the position of the strip and the light yield [Ber09].

2.2.2 MMRPC
The MMRPC (Multi Gap Multi Strip Resistive Plate Chamber) barrel is a gaseous
detector for precise time of flight measurements within polar angles of 27◦< Θ <50◦

5 In some cases, the scintillator contains several wavelength shifters, which absorb the light and
reemit it with a smaller wavelength. This method can be necessary, if the photo detectors are
sensitive to a certain wavelength interval.



20 2 The FOPI Experiment at GSI

(a) (b)

Figure 2.4: (a): Avalanche formation in a Single Gap RPC. Only primary ionization
which occurs within the region close to the cathode (gray area) leads to a detectable
signal (red avalanche). (b): Schematic view of a Multiple Gap RPC.

(see Figure 2.1).
MMRPCs are advancements of ordinary RPCs, which consist of two gas enclosing
layers of high-ohmic material (e.g. glass), coated with copper on the outside. A
voltage difference, applied to the two electrodes, produces an electric field, which
accelerates the primary electrons, created by a traversing particle, towards the anode,
where the avalanche formation takes place. Primary ionization happens only within
a small region since only avalanches that originate close to the cathode grow big
enough to result in a detectable signal (Figure 2.4a) [ZCH+96]. The avalanches
induce signals on the anodes, which can be read out on both ends, to reconstruct the
spatial position of the hit. Finally, the charges are neutralized in the resistive layers
in front of the electrodes [Ber09]. The variation of the position of the initial clusters,
produced in the primary ionization region, introduces a time jitter, which limits the
time resolution of the RPCs [ZCH+96].
MMRPCs have been developed, in order to improve the timing by decreasing the
primary ionization and the avalanche growth region. This is achieved by subdividing
the gas volume into multiple gaps (Figure 2.4b). In addition, the anodes are segmented,
to enhance the spatial resolution.
The FOPI MMRPC barrel consists of 30 super-modules, surrounding the CDC, each
containing 5 single MMRPCs, which are mounted alternately staggered in two layers,
to avoid acceptance holes [Sch04]. It has an intrinsic time resolution of less than 65 ps
[Kiš10]. Together with the start detector for the pp experiment (see section 2.3.1),
which is the limiting factor, the overall time resolution is around 180 ps. Analogous to
the Plastic Barrel, the mounting structure of the CDC is reflected in two acceptance
holes of approximately 11◦. The gas mixture is composed of 88% R134a6, 15% SF6
and 5% Isobuthane. The high drift field of 110 kV/cm is generated by a drift voltage
of 9.6 kV, which is applied to the cathode [Kiš10].

6 Also referred to as tetrafluorethan.
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2.2.3 PLAWA
The PLAWA (Plastic Wall) is the time of flight detector of the forward system,
covering polar angles of 7◦< Θ <30◦. It consists of 8 radial sectors, each containing 64
plastic scintillators [Ryu09]. The strips, whose length range from 45 cm for small to
165 cm for large polar angles, are read out on both ends for the position measurement
of the hit [Har03]. The intrinsic time resolution varies between 80 ps to 120 ps,
corresponding to a spatial resolution of 1.2 cm to 2 cm [Ryu09]. The total time of
flight resolution together with the start detector is around 400 ps.

2.2.4 ZDC
The flight time of particles with small polar angles between 1◦ and 7◦ is measured
with the Zero Degree Counter (ZDC). It forms the inner part of the forward wall
and is made of 252 plastic scintillator strips, which are arranged in 7 concentric rings
around the beam axis [Ryu09]. In contrast to the other scintillator detectors, the
strips are read out on one side, which is turned away from the beam. The ZDC has
an intrinsic time resolution of 230 ps to 340 ps [Ber09].

2.3 Beam detectors

Figure 2.5: Location of the beam detectors, target system and Λ trigger [BHS+09].

2.3.1 Start detector
The start signal for the time of flight measurement is delivered by a start detector,
which is placed directly inside the beam in front of the target (Figure 2.5). It
is composed of 5 vertically arranged, 1 cm thick and 2 mm wide scintillator strips
[BHS+09]. The segments are read out on both ends with photomultiplier tubes
(PMTs), which are magnetically shielded and equipped with power supply boosters,
to maintain the high gain at high rates up to 2 · 106 1/s. The start detector achieves
an intrinsic time resolution of around 130 ps [BHS+09].
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2.3.2 Veto detector

Figure 2.6: Sketch
of the veto detector:
The scintillators are in-
dicated in yellow, the
PMTs in gray [Ber09].

Besides the interaction with the target, the beam parti-
cles can furthermore interact mutually before hitting the
target and attain to the detectors [Ber09]. In order to
suppress those events, a veto detector is placed between
start detector and target (Figure 2.5). It consists of 2
half-divided 5 mm scintillators with a hole in the center,
which limits the usable target size in the xy plane to a
circle with a diameter of 1 cm (Figure 2.6). Because of
the magnetic field of 0.6 T close to the target, fine-mesh
PMTs are used for the read out, since they are capable of
operating even within strong magnetic fields [BHS+09].
Particles, scattered off the beam axis due to reactions be-
fore target interaction, are detected by the veto detector,
which creates a trigger signal. This signal is fed into the
general trigger logic, stopping the data acquisition, if such
an event occurs.

2.4 Target
For the pp experiment, a liquid hydrogen LH2 target was used, consisting of a
cryogenic cooler and a cylindrical target volume with 1.5 cm diameter and 2 cm
width [BHS+09]. The cooler is located outside of the beam pipe (Figure 2.5) and is
connected to the target volume via a thin synthetic pipe, through which the liquid
hydrogen flows due to gravity. The evaporated hydrogen flows back into the cryostat
via a aluminum pipe, which surrounds the synthetic tube. This procedure affords a
final temperature of approximately 12 K [Ber09].
The luminosity L for fixed target collisions is defined by the following relation

L = nt ·Lt · Ṅb (2.1)

where nt is the target particle density, Lt the width of the target volume and Ṅb the
beam rate.
The target particle density is calculated via the Avogadro constant NA, the density
and the molar mass of LH2 as follows.

nt = ρLH2
NA

1
2Mmol,LH2

= 70.8 kg
m3

2 · 6.022 · 1026 1
kmol

2 kg
kmol

= 4.12 · 1028 1
m3 (2.2)

Together with the number of around 107 beam protons per 10 seconds total spill
length and the target width of Lt = 0.02 m, the luminosity for the pp experiment
calculates as

L = 4.12 · 1028 1
m3 · 0.02m· 107

10s = 82.4 1
mb s

(2.3)
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Finally, the luminosity multiplied with the total cross section for pp reactions at
3 GeV beam energy σpp = 44 mb determines the target reaction rate of the experiment.

Rpp = L·σpp = 82.4 1
mb s

· 44mb = 3.63kHz (2.4)

This reaction rate is 6 times higher than the recording rate of the FOPI DAQ system
of 0.6 kHz, which is limited mainly due to the dead times of the drift chambers
[Mün08; Mün12]. Therefore, a number of different trigger conditions is used to reduce
the data rate (see section 2.6).

2.5 Λ Trigger SiΛVio
The Λ Trigger SiΛVio (Silicon for Λ-Vertexing and Identification Online) has been
developed especially for the pp experiment, to generate a trigger signal on the decay
signature of Λ hyperons. Additionally to the enhancement of events containing
Λ’s, SiΛVio improves the tracking capability of the FOPI spectrometer for particles
emitted in forward direction.
The Λ hyperons produced in the decay of kaonic bound states partially (B.R. =
63.8%) decay with a mean free path of cτΛ ≈ 7 cm into a proton and a negatively
charged pion, which are mainly emitted into the forward direction (see section 1.3.2)
and therefore detected by the HELITRON drift chamber and the PLAWA. Due to
the large distance of the HELITRON to the Λ decay vertex, the detector is not well
suited for secondary vertex reconstruction. By providing an additional hitpoint close
to the target, SiΛVio enables the reconstruction of the Λ decay vertex.
The SiΛVio trigger is placed right after the target inside the CDC (Figure 2.5) and
consists of two layers of silicon detectors: SiΛVio-A and SiΛVio-B.
SiΛVio-A is an annular silicon detector with an inner diameter of 14 mm and an
outer diameter of 47 mm, which is divided into 32 sectors. It covers full azimuthal
acceptance and polar angles of 10◦< Θ <25◦ [Mün12]. The silicon is read out on
only one side, since it is exclusively used for the trigger generation.
The second layer SiΛVio-B contains 8 single rectangular silicon detectors with an
active area of 40x60 mm2. Each detector is read out on both sides and divided
into 407 and 60 1 mm thick strips respectively, which are orientated perpendicularly
[Fab10]. The position of the hitpoints can be reconstructed by combining the signals
of both sides.
The distances between the target and SiΛVio-A of 3 cm and between the two silicon
layers of 12.5 cm are adjusted according to the mean free path of the Λ hyperons, ren-
dering 60% of the Λ’s decay between SiΛVio-A and SiΛVio-B (Figure 2.7) [MFBH10].
The neutral Λ’s traverse the first layer unobserved, while the primary kaons and
protons are detected. The protons and the pions, which are produced in the Λ decay,
are measured afterwards in the second silicon together with the two primary particles.

7 For read out reasons, the 40 strips are grouped to 16 strips.
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Figure 2.7: Scheme of the trigger concept of SiΛVio: The kaon and the proton are
detected in the first layer, while the neutral Λ is traverses unobserved. Subsequently, the
lambda decays into a proton and a pion, which are measured in the second silicon layer
together with the two primary particles. The increase of the multiplicity in SiΛVio-B
with respect to SiΛVio-A defines the trigger pattern.

This difference in multiplicities of the two silicon layers defines the Λ-trigger condition
for the SiΛVio detector (see section 2.6).
For the pp experiment, the trigger condition was set such, to have at least 1 parti-
cle detected in SiΛVio-A and minimum 2 particles measured by SiΛVio-B. Based
on simulations, this condition is optimized to record Λ-trigger events with a maxi-
mum efficiency8 and to simultaneously guarantee a high Λ enhancement capability
[MFBH10].

2.6 Trigger conditions
Like any high energy experiment, the FOPI spectrometer uses several trigger con-
ditions to select interesting events to be recorded for the later analysis. Due to the
limited DAQ rate, a first selection has to be made online. Generally, the most funda-
mental trigger condition is based on the multiplicity in the time of flight detectors,
which indicates, that a real reaction took place. In combination with a start detector
and a veto detector to reject pre-target reactions, the LVL1 trigger is defined. The
explicit conditions, which were used for the pp experiment, are listed in the following.

8 If the DAQ rate exceeds the trigger rate, Λ-trigger events can get lost due to dead time.
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• LVL1 trigger
• ≥ 1 hit in the start detector
• < 1 hit in the veto detector
• ≤ 1 hit in the ZDC
• ≥ 1 hit in the PLAWA
• ≥ 1 hit in the MMRPC or Plastic Barrel

• Λ trigger
• ≥ 1 hit in SiΛVio-A
• ≥ 2 hits in SiΛVio-B

• LVL2 trigger
• LVL1 and Λ trigger

As explained in the previous section, the SiΛVio detector delivers a Λ-trigger, based
on the difference in multiplicities of the two silicon layers SiΛVio-A and SiΛVio-B.
Together with the LVL1 trigger, this condition constitutes the LVL2 trigger.
Depending on the special requirements of the analysis, the different trigger conditions
can be combined in each possible way.

2.7 Particle identification with the FOPI spectrometer
In order to study the properties of nuclear matter created in particle collisions, it is
essential to identify the produced particles of interest by measuring their mass and
charge polarity. Since it is not possible to measure the mass directly, it has to be
reconstructed from other observables.
One of these observables is the momentum, which is measured with the drift chambers
CDC and HELITRON. A non-neutral particle with charge q and velocity ~v moving
inside of a magnetic field ~B is deflected from its original flight path due to the Lorentz
force

~F = q
(
~E + ~v × ~B

)
(2.5)

which acts only, if the particles velocity has components, which are non-parallel to the
magnetic field. Since the FOPI solenoid magnet generates a homogeneous field inside
the CDC parallel to the beam axis, the trajectory of the particle is bent circularly in
the xy plane, where the Lorentz force acts as centripetal force. Solving this relation
for the transverse momentum component pt delivers the following expression.

pt = qBzr (2.6)

Bz is the z-component of the magnetic field ~B = (0,0,Bz)T . Thus, the transverse
momentum of CDC tracks can be calculated by measuring the radius of the circular
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track inside the magnetic field.
As mentioned before, the HELITRON is already located in the region, where the
magnetic field starts to become inhomogeneous. Therefore, the method described
before is not applicable. In this drift chamber, the momentum reconstruction is done
via an interpolation with quintic B-splines in an iterative way [Ple99; Win74].
Another standard method for momentum reconstruction is the measurement of the
tracks sagitta s, which is the deviation of the curved track from a straight line
with length L. The sagitta is related to the magnitude of the particles transverse
momentum pt via the following equation [Gru93].

pt = qBzL
2

8s (2.7)

Therefore, the transverse momentum of charged particles can be reconstructed by
measuring the sagitta of their flight tracks with the tracking detectors. Since the
sagitta decreases with increasing velocity, the relative error of pt is proportional to
the transverse momentum of the particle [PRCZ09].

dpt
pt
∝ pt (2.8)

The total momentum can be calculated together with the polar angle Θ of the track.

p = ptsin(Θ) (2.9)

Besides the momentum, additional observables are required in order to identify charged
particles by determining their mass. The FOPI spectrometer offers 2 possibilities for
this purpose.

2.7.1 Energy Loss
The first possibility is to measure the energy loss dE

dx of charged particles in the
detector material.
Charged particles passing through matter deposit energy mainly by undergoing
inelastic collisions with electrons of the material. This process is characterized by the
average energy loss per unit pathlength9, which is given by the Bethe Bloch formula
[Leo94].〈

−dE
dx

〉
= 4π

(4πε0)2
z2e4ne
mec2β2

[
1
2 ln

(
2mec

2β2γ2Tmax
I2

)
− β2 − δ

2

]
(2.10)

with

• z· e: charge of incident particle

• ne: electron number density of material

9 Also referred to as stopping power.
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• me: electron mass

• β = v
c : velocity of incident particle

• γ: Lorentz factor

• Tmax: maximum kinetic energy transferred to electron in single collision

• I: mean excitation energy

• δ: density correction factor

The average energy loss as a function of the momentum depends on the particle
mass. This enables the identification of charged particles within a certain momentum
interval, depending on the specific detector resolution (see Figure 2.8).

2.7.2 Time of flight
The second method uses the flight time ∆t of the particle, which is measured with
the time of flight detectors. Together with the length of the flight track L extracted
from the drift chambers, the velocity βc = L

∆t can be calculated, which defines, in
combination with the momentum p, the mass m0 of the particle according to the
following relation [Mün08].

p = m· v = m0 · γ·βc (2.11)

Figure 2.8: Particle identification via the energy loss of charged particles in the CDC
drift chamber for the data taken during the pp experiment. The black curves indicate
the theoretical positions of the different particle species according to the Bethe-Bloch
equation (2.10).
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(a) PID with the PLAWA (b) PID with the MMRPC

Figure 2.9: Particle identification via the time of flight measurement for the data taken
during the pp experiment. The black lines represent the positions of the different particle
species according to equation 2.11. With the RPC, kaons can be separated from protons
and pions, which is not possible with the PLAWA.

Figure 2.9 shows the momentum p per charge q plotted against the velocity v, where
the time of flight is measured with the PLAWA (left) and the RPC (right). The data
was recorded during the pp experiment. With the PLAWA detector, the separation
of kaons from protons and pions is not possible due to its limited time resolution. In
contrast, the excellent time resolution of the MMRPC enables the identification of
kaons, which is necessary for the reconstruction of ppK−, since its decay contains a
K+ in the final state.

2.7.3 Invariant mass and missing mass technique
The methods described above allow to identify charged particles, which are directly
measured in the FOPI sub-detectors. However, in many reactions, particles with
short lifetimes are produced, which cannot be measured directly, since they decay
before reaching the detectors. Anyhow, under certain circumstances it is possible to
reconstruct the decayed particles afterwards.
In the center of mass (CMS) reference frame of the daughter particles, the mother
particle is at rest at the moment of the decay. Therefore, the sum of the 4-momenta
pµi = (Ei, ~pi)T of the daughter particles is exclusively determined by the mass of the
mother, referred to as the invariant mass. Since this sum is connected to the square
of the mother particles 4-momentum, which is a Lorentz invariant scalar, this relation
is valid in every reference frame. If now all n decay products of the mother particle
are detected, its mass can be reconstructed via the invariant mass technique, using
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the following equation.

Minv = 1
c2

√
pµmother pµ,mother = 1

c2

√√√√( n∑
i=1

Ei

)2

−
(

n∑
i=1

~pi

)2

c2 (2.12)

Another method to reconstruct the mass of a decayed particle exploits energy and
momentum conservation. If the particle of interest is produced together with m other
particles, which are measured in the detectors, it is possible to reconstruct the so
called missing mass via the subsequent formula

Mmiss = 1
c2

√
pµmother pµ,mother (2.13)

= 1
c2

√√√√√Ebeam + Etarget −
m∑
j=1

Ej

2

−

~pbeam + ~ptarget −
m∑
j=1

~pj

2

c2

where pµbeam = (Ebeam, ~pbeam)T and pµtarget = (Etarget, ~ptarget)T are the 4-momenta of
the beam and the target particle, respectively [Sie10].
If energy and momentum conservation are fulfilled, the invariant and the missing
mass are equivalent.





3 The Kinematic Refit

Kinematic fitting is a well-established tool in the exclusive analysis of particle reactions
to reduce background and to improve the mass resolution of intermediate particles,
which are reconstructed via the invariant or missing mass technique [BLL10; Sie10].
For the analysis of the ppK−, it is essential to have a good mass resolution and S/B
ratio of the intermediate Λ, which itself has to be reconstructed. This is the motivation
for the development of a kinematic refit for the analysis of the pp experiment. The
refit algorithm is based on the work of Johannes Siebenson, described in [Sie10], the
theoretical framework mainly relies on the write-ups of Paul Avery [Ave98].

3.1 Motivation and Theory
For the exclusive analysis of elementary particle reactions, the 4-momenta pµ =
(E, ~p)T of all produced particles have to be determined. This is done in general with
various specialized detectors, which are capable of measuring the momenta ~p of the
particles and other observables, that allow for particle identification. After identifying
the different particles, the masses are set to the nominal values, enabling, together
with the momentum, the calculation of the energy E. Intermediate particles, that
have a short lifetime and decay before being detected, can be reconstructed via the
invariant or missing mass technique, applied to the particles, which are measured in
the final state (see section 2.7).
The different particle tracks are completely characterized by the momentum ~p, the
energy E (or the mass m, respectively) and a space point ~x, at which the momentum
is evaluated, the so-called emission point. These observables are hereafter referred to
as track parameters. However, these track parameters can only be determined within
certain errors, since the detectors possess finite resolutions for the measurements. In
many cases, the particle tracks of an exclusive reaction are measured with different
detector systems and are independently fitted to the respective set of hit points.
Therefore, the final state of an exclusive event will always deviate from the real
event within uncertainties, that depend on the specific detectors involved in the
measurements. Consequently, the mass resolution of intermediate particles, which
are reconstructed via the invariant or missing mass technique, is also finite.

The scope of kinematic fitting is to improve the mass resolution of these intermediate
particles and to reduce the amount of recorded background reactions, where the
exclusive events are spuriously identified as such. The kinematic refit is a mathematical
procedure, which uses physical laws that govern particle reactions to improve the
measurement of the process [Ave98]. It forces the particle tracks to conform to

31
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external knowledge in terms of physical laws and geometrical relations by imposing
certain constraint conditions. These constraints can be either fundamental principles
as energy and momentum conservation or a fixed invariant or missing mass of
reconstructed particles, or geometrical correlations such as common vertices and
kinematics topology (e.g. back-to-back emission of particles in the CMS reference
frame).
Each particle track i of an exclusive event is represented by a set of parameters1, e.g.
the momentum and the emission point ~α0,i = (px,i, py,i, pz,i, xi, yi, zi)T in Cartesian
coordinates. The kinematic refit calculates a new set of parameters ~αi for each
particle, that fulfills the constraint conditions. The tracks are pulled away from
their original positions within the uncertainties of the measurements, which have
to be estimated previously and provided to the fit as input. At the same time, the
kinematic refit ensures, that the new parameters stay as close as possible to the
unconstrained ones.

3.1.1 General principles of constrained fitting
Mathematically, the kinematic refit is performed via the method of Lagrange mul-
tipliers by minimizing the following Lagrange equation with respect to ~α and ~λ.

L(~α,~λ) = (~α− ~α0)T V−1
~α0

(~α− ~α0) + 2~λT ~H(~α) (3.1)

V−1
~α0

is the inverse of the measurement covariance matrix2, ~α contains the 6n refitted
and ~α0 the 6n unconstrained parameters of the n tracks.

V−1
~α0

=



1
σ2
α1

0 · · · 0

0 1
σ2
α2
· · · 0

...
... . . . ...

0 0 · · · 1
σ2
α6n


~α =


~α1

~α2

...
~αn

 ~αi =



px,i
py,i
pz,i
xi
yi
zi


~H(~α) contains the m holonomic3 constraint conditions and ~λ is the m-dimensional
vector of Lagrange multipliers. The factor 2 simplifies the further calculations.
The first term of equation 3.1 ensures, that the refitted parameters ~α, which fulfill

1 The parameters and their coordinate system can be chosen in different ways. For the kinematic
refit, however, it is important, that the track representation completely describes the tracks and
that it is physically meaningful, i.e. the errors of the parameters have to be Gaussian distributed.

2 The covariance matrix V~α0 is a (6n× 6n)-matrix containing the uncertainties of the measured
unconstrained parameters ~α0. The diagonal elements are the squares of the standard deviations
of the parameters, the non-diagonal elements contain the correlated errors. For a full description
of the measurement, these non-diagonal elements, e.g. originating from multiple scattering, have
to be incorporated. In the following, however, they will be neglected.

3 i.e. constraint equations of the form ~H(~α) = ~0.
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the constraints, stay as close as possible to the unconstrained parameters ~α0. Coinci-
dentally, the parameters are shifted only within the measurement uncertainties σ2

αi ,
which are contained in the covariance matrix V~α0 . The expression is defined via the
well-known χ2-statistics.

χ2 = (~α− ~α0)T V−1
~α0

(~α− ~α0) =
6n∑
l

(αl − α0,l)2

σ2
αl

(3.2)

For the correct functioning of the kinematic refit, it is advantageous, that the errors
are Gaussian distributed. From this follows, that the parameters obtained from
the least squares method equal the values resulting from the maximum likelihood
procedure4. Provided that the uncertainties have an expectation value of zero, the
Gauss-Markov theorem assures, that the refitted parameters are unbiased5 and have
minimum variance σ2

αi , i.e. the kinematic refit delivers the best possible set of
parameters [FRB+00; Jam06].
The second term of equation 3.1 guarantees, that the refitted tracks exactly fulfill
the constraint conditions. This is achieved via Lagrange multipliers, which will be
explained in the following subsection.

Lagrange multipliers

The method of Lagrange multipliers is a standard tool for the task of minimizing or
maximizing a function in consideration of constraint conditions.
The m constraint conditions for the kinematic refit are defined in a holonomic way.

~H(~α) = 0 (3.3)

Instead of substituting the m constraint equations into the function L (equation 3.1),
a set of m new variables λi, the so called Lagrange multipliers, is introduced to the
fit. The Lagrange multipliers are included in L as coefficients of a linear combination
of the constraints.
For the following visualization, the 6n-dimensional parameter space is without loss
of generality reduced to 2 dimensions (~α = (α1, α2)T ), with only one constraint
condition. Then the two conditions for the kinematic refit read as follows.

(i) Minimize the function χ2(α1,α2) = (~α− ~α0)T V−1
~α0

(~α− ~α0)

(ii) Subject to H(α1,α2) = ~0

Figure 3.1 depicts a visualization of the two conditions. Condition (ii) defines a
contour H(α1,α2) = 0 of the function H, which is projected onto the function

4 In case of Gaussian errors, the probability density function (pdf) for the parameters reads g(~α) =∏
l
(
√

2πσαl)
−1exp

[
−
∑6n

l

(αl−α0,l)2

2σ2
αl

]
=
∏
l
(
√

2πσαl)
−1exp

(
−χ

2

2

)
. Obviously, maximizing this

pdf is equal to minimizing χ2.
5 i.e. the parameters converge to the true values if the experiment is repeated very often [Ave98].
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Figure 3.1: Illustration of the Lagrange multiplier method. The black lines are
the contours of χ2(α1,α2), the red line represents the holonomic constraint condition
H(α1,α2) = 0, which is a contour of H(α1,α2). The solution of the constrained mini-
mization problem is obtained, if the contours touch tangentially. The minimum value of
χ2 is illustrated by the thick black contour χ2 = dmin.

Figure 3.2: 2-dimensional projection of the contour map. The demand, that the two
contours touch tangentially, is equivalent to the condition, that the gradients of H (red
arrow) and χ2 (black arrows) are parallel orientated. However, the two gradients do not
have to posses the same magnitude.
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to be minimized χ2 (indicated by the red line), and which crosses its contours
χ2(α1,α2) = di. Following the contour H(α1,α2) = 0, condition (i) requires the
contour lines of H and χ2 to contact tangentially, otherwise the value of χ2 could be
decreased by moving along H(α1,α2) = 0 in either direction. This is equivalent to
the demand that the gradients of H and χ2, which are always perpendicular to the
respective contour lines, are parallel (Figure 3.2).

~∇α1,α2χ
2 = −λ~∇α1,α2H (3.4)

The Lagrange multiplier λ appears as a constant, since the two gradients are not
restricted to have the same magnitude. These conditions are combined into the
Lagrange equation.

L(α1,α2,λ) = χ2(α1,α2) + λH(α1,α2) (3.5)

The solution of the constrained minimization problem (equations 3.3 and 3.4) is now
obtained by minimizing L with respect to ~α and λ.

∂L(α1,α2,λ)
∂~α

= ~0, ∂L(α1,α2,λ)
∂λ

= 0 (3.6)

Figure 3.3 illustrates the effect of the kinematic refit on the track parameters. The
constraint condition (red line) defines a hyperplane in the parameter space, on which
the real parameters ~αreal are located. The uncertainties of the measurement lead
to parameters ~α0, which, in the majority of cases, do not fulfill the constraint. The
blue ellipsoid indicates the the area, within which the parameters are allowed to be
shifted, defined by the errors of the measurement. The kinematic refit moves the
parameters onto the constraint hyperplane, resulting in a new set of parameters ~α.
Coincidently, the refit forces the parameters to be shifted by the minimum distance.
In most of the cases, the new parameters ~α will be closer to the real values than the
unconstrained ones6 [Sie10].

Linearization of the constraint equations

Returning to the general description, the minimization of equation 3.1 yields deriva-
tives of the constraint equations ~H(~α), which can in principle be highly non-linear
functions of the parameters ~α. Since no general procedure exists for solving these
equations analytically, the constraint functions ~H(~α) have to be expanded around an
approximate solution ~αA7.

~H(~α) ≈ ~H(~αA) + ∂ ~H(~αA)
∂~α

(~α− ~αA) ≡ Dδ~α+ ~d (3.7)

6 In fact, the refit does not guarantee explicitly, that the refitted parameters ~α are closer to the
real values ~αreal than the unconstrained parameters ~α0. Nevertheless, this situation is favored,
since the new parameters fulfill the constraints, which is also the case in the real experiment.

7 For convenience, e.g. the unconstrained parameters ~α0 can be chosen as the approximate solution.
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Figure 3.3: The kinematic refit shifts the parameters ~α onto the constraint hyperplane
(red line) within the measurement error band, indicated by the blue ellipsoid. With high
probability, the new parameters ~α are closer tho the real values ~αreal.

where δ~α = ~α− ~αA and

D =



∂H1(~α)
∂α1

∂H1(~α)
∂α2

· · · ∂H1(~α)
∂α6n

∂H2(~α)
∂α1

∂H2(~α)
∂α2

· · · ∂H2(~α)
∂α6n

...
... . . . ...

∂Hm(~α)
∂α1

∂Hm(~α)
∂α2

· · · ∂Hm(~α)
∂α6n


~d =


H1(~αA)
H2(~αA)

...
Hm(~αA)

 (3.8)

This simplification is justified, because the constraints vary slowly enough within the
error bands of the parameters. Now equation 3.1 can be written as

L(~α,~λ) = (~α− ~α0)T V−1
~α0

(~α− ~α0) + 2~λT (Dδ~α+ ~d) (3.9)

This linearized Lagrange equation can be minimized analytically with respect to
~α and ~λ. Solving the resulting formulas for the new parameters ~α and the new
covariance matrix V~α yields the following matrix equations.

~α = ~α0 −V~α0DTVD(Dδ~α0 + ~d) (3.10)
V~α = V~α0 −V~α0DTVDDV~α0 (3.11)



3.1 Motivation and Theory 37

where the auxiliary matrix VD is defined as

VD = (DV~α0DT )−1 (3.12)

Remarkably, only one single matrix has to be inverted, the (m×m) matrix VD. The
diagonal elements of the new covariance matrix V~α are reduced in size compared to
V ~α0 , which is caused by the minus sign in equation 3.11. Finally, the χ2 value of the
fit is obtained via the following equation.

χ2 = (Dδ~α0 + ~d)TV−1
D (Dδ~α0 + ~d) (3.13)

The expression for χ2 is a sum of m distinct terms, so the number of degrees of
freedom of the fit is equal to the number of constraint equations m.
In the rare cases, where the constraint conditions 3.3 are linear in ~α, the final result
is already given by the equations 3.10-3.13. In the non-linear cases, the kinematic
refit has to be applied iteratively, where the values obtained by 3.10-3.13 are used as
input for the next iteration step: ~αA = ~α. After solving the new Lagrange equation,
improved values for ~α and V~α are calculated, which fulfill the constraints better. This
procedure, which is repeated until the solution converges, is illustrated by Figure 3.4.
Since the constraints vary only slowly with respect to the parameters ~α, usually 4-6
iteration steps are sufficient.

3.1.2 Solving for unknown parameters
The constrained fitting technique, described in the sections above, can be expanded
to the situation, where unknown parameters ~z are contained in the Lagrange equation
L. In this case, the r unknown values zi have to be calculated previously to the
track parameters ~α. The modified Lagrange equation, which is additionally expanded
around a convenient point ~zA, reads

L(~α,~z,~λ) = (~α− ~α0)T V−1
~α0

(~α− ~α0) + 2~λT (Dδ~α+Eδ~z + ~d) (3.14)

with δ~z = ~z − ~zA. The (m× r) matrix

E =



∂H1(~α,~z)
∂z1

∂H1(~α,~z)
∂z2

· · · ∂H1(~α,~z)
∂zr

∂H2(~α,~z)
∂z1

∂H2(~α,~z)
∂z2

· · · ∂H2(~α,~z)
∂zr

...
... . . . ...

∂Hm(~α,~z)
∂z1

∂Hm(~α,~z)
∂z2

· · · ∂Hm(~α,~z)
∂zr


(3.15)

contains the derivatives of the constraints ~H(~α) with respect to the unknown param-
eters ~z. The ndf of the fit is equal to the number of constraint equations m minus
the number of unknown parameters r. The procedure to calculate the new values of
~α and ~z is described in the next subsections.
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Figure 3.4: 1-dimensional visualization of the iteration procedure. The constraint
condition (black line) is expanded around an approximate solution αA = α0. The new
parameters α1 are located at the zero of this linearized constraint (red line). In the
second iteration step, the constraint function is expanded around the solution of the
previous iteration step α1 (blue line), resulting in a new parameter α2. This illustration
shows, that the parameters converge to the zero of the full constraint.

Vertex constraints

Equation 3.14 contains no prior covariance matrix for the parameters ~z. If the n
tracks are supposed to be forced to pass through a common space point ~z, however,
the covariance matrix V~z of the vertex is possibly known in advance. Provided that
this is the case, the errors of the vertex are accounted for by adding a second χ2 term
to the Lagrange equation.

L(~α,~z,~λ) = (~α− ~α0)T V−1
~α0

(~α− ~α0) + (~z − ~z0)T V−1
~z0

(~z − ~z0) (3.16)
+ 2~λT (Dδ~α+Eδ~z + ~d)

where ~z0 is the initial vertex and V~z0 its respective covariance matrix. Minimizing
this function with respect to ~α, ~z and ~λ yields the following matrix equations for the
parameters.

~z = ~z0 −V~z0ET (VD −VDEV~zETVD)(Dδ~α0 +Eδ~z0 + ~d) (3.17)
~α = ~α0 −V~α0DT (VD −VDEV~zETVD)(Dδ~α0 +Eδ~z0 + ~d) (3.18)

The auxiliary matrix VD is defined in equation 3.12. The new covariance matrices
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are calculated as follows.

V~z =
(
V−1
~z0

+ETVDE
)−1

(3.19)

V~α = V~α0 −V~α0DTVDDV~α0 +V~α0DTVDEV~zETVDDV~α0 (3.20)

In contrast to the previous case, two additional matrices have to be inverted, the
(r × r) matrices V~z0 and V~z. The new vertex covariance matrix V~z is the weighted
average of the initial vertex error matrix V~z0 and the errors determined from the
tracks, contained in the definition of VD (equation 3.12). The new covariance matrix
of the track parameters V~α is decreased in comparison to the initial covariance matrix
V~α0 due to the applied constraints. In the case of vertex constraints, however, the
covariance matrix elements are increased by the last term of equation 3.20, which
originates from the vertex fit itself. It is worth mentioning, that this last term is
the only one, that contains track-track correlations trough the matrix V~z. This fact
is reflected by the shape of the (6n × r) covariance matrix of the tracks and the
unknowns.

cov(~α,~z) = −V~α0DTVDEV~z (3.21)

The matrices of the other term V~α0 , D and VD are block diagonal, so that the
different tracks are not mixed, equivalent to fitting each track separately.
The expression for the χ2 value is given by

χ2 = (Dδ~α0 +Eδ~z0 + ~d)T (VD −VDEV~zETVD)T (Dδ~α0 +Eδ~z0 + ~d) (3.22)

Fitting to an unknown vertex position

If the initial vertex position ~z0 is not known in advance, the refitted vertex has to be
determined from the constraints. One way to achieve this, is to assign large values to
the covariance matrix V~z0 . Consequently, the term

(~z − ~z0)T V−1
~z0

(~z − ~z0) (3.23)

can be neglected in equation 3.16 and the previous Lagrange equation 3.14 is obtained
again. The criterion for the refit, to shift the new vertex as little as possible away
from the initial position, does not hold anymore. Thus, the fitted vertex position is
completely arbitrary and only determined by the other constraint conditions.
Again, the effective number of degrees of freedom for this type of fit is equal to number
of constraint equations m minus the number of unknown parameters r. Now, the
physical meaning of this relation can be understood. Because the errors of the vertex
are very large, the fit forces the vertex parameters to move within an insignificant
number of standard deviations. Since adding the term 3.23 with large errors to the
Lagrange equation 3.14 does not change the results, the ndf is equal in both cases.
Due to this equivalence, the equations 3.17-3.22, where large errors are assigned to
V~z0 (i.e. (V−1

~z0
)ij = 0), can be used to solve for unknown parameters in equation 3.14

and to calculate the new parameters ~α.



40 3 The Kinematic Refit

Fitting to a fixed vertex position

If the kinematic refit is supposed to fit the tracks through a fixed vertex, the equations
3.10-3.13 can be used. The same solution is obtained by setting δ~z0 = ~0, (E)ij = 0 and
(V~z0)ij = 0 in the equations 3.17-3.22. In this case, the tracks remain uncorrelated
after the fit, i.e. the constraints could also be applied sequentially.

3.2 Quality criteria of the kinematic refit
The effect of the kinematic refit crucially depends on the correct input of the parameter
covariance matrix V~α0 . In some cases, this may be exactly known in advance, e.g.
if a kalman filter is used for track fitting, but frequently the uncertainties have to
be estimated. Hence, it is important to have a set of criteria which are a measure
for the quality of the fit and that indicate the presence of misidentified events and
whether the error input is correct.

3.2.1 χ2 distribution and p-value
The kinematic fitting technique is based on the minimization of the χ2 value, being
represented by the first term of equation 3.1. Therefore, the final χ2 distribution of
the fit should be a good measure of its global performance quality.
The probability density function of the χ2 values for correctly estimated and Gaussian
distributed errors is given by the equation8

fν(χ2) = 1
2ν/2Γ (ν/2)

(χ2)ν/2−1e−
1
2χ

2 (3.24)

with a mean value of

〈χ2〉 = ν (3.25)

where ν is the number of degrees of freedom of the fit and Γ the gamma function.
Figure 3.5 shows the χ2 distributions for different values of ν. A χ2 distribution
following the theoretical pdf roughly indicates that the global fit was performed
correctly.
It is convenient to define a quantity, which gives the probability that the same fit, if
repeated, will result in a χ2 value as large as or larger than the value of the current
fit χ2

fit. The so called p-value is defined as

p− value =
∞∫

χ2
fit

fν(χ2)dχ2 (3.26)

8 This formula can be derived from the joint pdf of footnote 4 via a Jacobian transformation
[FRB+00].
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Figure 3.5: χ2 distributions for different values of the ndf [Sie10]. The functions are
shifted towards higher χ2 values for an increasing ndf, since the fit has to move the
parameters ~α within a larger distance if more constraints are applied. In the limit of
ν → ∞, the χ2 distribution approaches a normal distribution. This follows from the
central limit theorem.

Instead of looking at the χ2 distribution, it is more descriptive to map the χ2 to a
flat distribution [Bau00]. If the error input is correct, the p-value is indeed evenly
distributed between 0 and 1. Since high χ2 values correspond to low p-values,
misidentified events, the track parameters of which have to be shifted far away from
~α0, are located at low p-values. Cutting on the p-value therefore enables the reduction
of background9 (see section 3.3.4).

9 The p-value is not to be confused with the significance or the confidence level. Usually, one
defines a significance level, which in statistics is also referred to as the 1− α quantile. χ2 values
larger than the significance level are rejected in the case of kinematic fitting, since they probably
belong to misidentified events. The probability, that these values are wrongly rejected is equal to
the area to the right of the significance level beneath the χ2 distribution. This area is called the
significance α. The area to the left of the significance level is called the confidence level and is
defined as 1− α. These values are fixed during the analysis and determine the conditions under
which the refitted events are rejected. In contrast, the p-value is calculated for each event and
is equal to the area to the right of χ2

fit, which differs from fit to fit. The event is rejected, if
the p-value is smaller than the defined significance α (and accordingly χ2

fit is larger than the
respective significance level). The probability to reject non-background events with p− value < α
by mistake is called type I error α (since it usually equals the significance α). The probability
to accept background events with p− value > α is referred to as type II error β and is mostly
unknown.
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3.2.2 Pull distributions
The χ2 and p-value distributions are global criteria evaluating the overall quality of
the fit. A quantity more sensitive to the single track parameters is the pull function
P (αi), which is defined for each single parameter αi as

P (αi) = α0,i − αi√
σ2
α0,i − σ2

αi

(3.27)

where σ2
α0,i and σ

2
αi are the errors of the unconstrained and the refitted parameters,

respectively. This function, which is also referred to as reduced residual, is a measure
of how much the particular parameter is shifted by the fit, normalized to the reduced
error difference [She07]. As shown in the equations 3.11 and 3.20, the elements of the
covariance matrix V~α are reduced compared to the values of V~α0 . This is important
for the definition of the pull functions concerning the square root in the denominator,
which has to be a real value.
If the covariance matrix V~α0 is estimated correctly, the pull distributions for the
single parameters are Gaussian distributed around 0 with a standard deviation of
σ = 1. The effect of wrongly estimated uncertainties or systematic errors can directly
be read out of the shape of the pull distributions (this is discussed in more detail in
section 3.3.3). Hence, they are a very important and highly sensitive quality criterion
for the kinematic refit. Indeed, if the covariance matrix is only roughly known in
advance, the pull distributions can be used to tune the errors to the correct values
afterwards.

3.3 The kinematic refit for the pp analysis
The kinematic refit algorithm for the analysis of the ppK− is constructed in a
modular and general way. In particular, it can be used with an arbitrary number
of particle tracks and different track representations regarding the number of track
parameters and the coordinate system. Three different track representations are
included, ~αcar, ~αsph and ~αmix, hereafter referred to as Cartesian, spherical and mixed
track representation. They are defined in the following way.

~αcar,i =



px,i

py,i

pz,i

xx,i

xy,i

xz,i


~αsph,i =



1/pi
θi

ϕi

R~x,i

θ~x,i

ϕ~x,i


~αmix,i =



1/pi
θi

ϕi

xx,i

xy,i

xz,i


(3.28)

px, py and pz are the Cartesian, 1/p, θ and ϕ the spherical coordinates of the momen-
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tum vector ~p, where 1/p is the inverse magnitude10 of ~p. The lower three components
parameterize the emission point ~x of the tracks in Cartesian (xx, xy, xz) and spherical
(R~x, θ~x, ϕ~x) coordinates. The energy does not appear as free parameter, since the
masses of the particles are set to their nominal values after the identification.
Depending on the specific detector setup, the track representation has to be cho-
sen such, that the parameters are uncorrelated and Gaussian distributed. In the
case of the FOPI spectrometer, no preferable coordinate system for the momentum
parameters exists. As described in section 2.7, the momentum of CDC tracks is
determined via the circular deflection inside the homogeneous magnetic field of the
solenoid. However, due to the inhomogeneity of the magnetic field, the momentum of
HELITRON tracks is calculated via a complicated iterative procedure using spline
interpolation. Since it is not possible to account for both reconstruction methods
(especially for the HELITRON), spherical momentum coordinates are used for the
kinematic refit in this analysis. The second silicon layer of the SiΛVio detector (see
section 2.5) delivers a hitpoint, which is defined in Cartesian coordinates. Therefore,
this coordinate system is also used for the emission point parameters of the kinematic
refit. Together with the momentum coordinates, the mixed track representation ~αmix
is used for the analysis.
Additionally, the track representations can be chosen to contain only the 3 momentum
parameters. This is possible if only non-vertex constraints are used, since they do
not alter the emission points of the particles.

The following subsections describe the different constraint conditions, that are imple-
mented in the kinematic refit. Since it is designed in a modular way, every possible
combination of the single constraints can be used.
The first step in the analysis of the ppK− is the reconstruction of the intermediate Λ
(see reaction R.2). In order to test the correct functioning of the different constraint
conditions, the following reaction with a beam energy of 3.1 GeV is simulated with
the PLUTO event generator (4 · 105 events) [F+10].

(R.6)p + p −→ Λ + p1 + K+

−→ p2 + π−

In order to simulate the finite resolution of the FOPI detectors, the track parameters
are manually Gaussian smeared around the simulated values. The errors are extracted

10 The parameter is defined this way, because many experiments measure the momentum via
the curvature of the tracks in a magnetic field, which is proportional to 1/p (see section 2.7).
Therefore, 1/p is the quantity, that is Gaussian distributed.
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from pull distributions, where the kinematic refit is applied to full scale simulations11

with realistic measurement uncertainties (see chapter 4). Since the reaction contains
4 charged particles in the final state (p1,K+,p2,π−), the parameter vectors ~α and ~α0
are 24 dimensional (4 · 6) vectors and the covariance matrices are (24× 24) matrices.

~α =


~αp1

~αK+

~αp2

~απ−

 V~α =



σ2
1/p,p1

0 · · · 0 0
0 σ2

θ,p1
· · · 0 0

...
... . . . ...

...
0 0 · · · σ2

θ~x,π−
0

0 0 · · · 0 σ2
ϕ~x,π−


(3.29)

Because the tracks are smeared manually with the same errors that are set in V~α0 ,
the kinematic refit should deliver a flat p-value distribution and pull functions with
σ = 1 centered around zero. In addition to the obvious tests, that the respective
constraints are fulfilled, this is used to check, whether the refit works correctly. In
the following chapters, 5 iteration steps are used for the kinematic refit.

3.3.1 Non-vertex constraints
Constraints that do not affect the exact position of the particle tracks in terms of
common vertices are called non-vertex constraints. The corresponding equations do
not contain the emission points of the particles, which are therefore unchanged by
the refit. The kinematic refit for the pp analysis contains 3 non-vertex constraints, an
invariant mass, a missing mass and an energy and momentum conservation constraint.

Invariant and missing mass constraint

This constraint forces the invariant mass of two or the missing mass of several particles
to equal a fixed value by shifting the involved tracks correspondingly.
In case of the invariant mass constraint, only the parameters of the two particles are
changed, the invariant mass of which is fixed by the refit. For the ppK− analysis, this
corresponds to the invariant mass of the p2 and the π−, which is set to the mass of
the Λ mother particle: M(p2,π

−) = MΛ = 1.116 GeV/c2. The holonomic constraint
equation reads12

H = 0 = (Ep2 + Eπ−)2 − (~pp2 + ~pπ−)2 −M2
Λ (3.30)

11 i.e. simulations where the particles created by an event generator (e.g. PLUTO) traverse
simulated detectors with realistic uncertainties. The calculation of the trajectories within the
detectors is usually done with the software GEANT [GEA]. Via so called digitizers, realistic
detector output signals are simulated, which pass the whole analysis chain, including particle
identification, etc.

12 For convenience, the speed of light constant c is set to 1 hereafter.
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where the energy of the particles with mass Mi is given by the relativistic energy-
momentum relation.

Ei =
√
M2
i + ~p2

i (3.31)

Since the track representation ~αmix is used, the 3-momenta of the particles are
parameterized in spherical coordinates.

~pi = pi


sinθi cosϕi

sinθi sinϕi

cosθi

 (3.32)

The elements (D)ij = ∂Hi(~α)
∂αj

of the D-matrix (see 3.8) are listed in appendix A. Analog,
the missing mass constraint can be used to set the missing mass of the two other
particles in the final state, p1 and K+, to the nominal Λ mass: MM(p1,K

+) = MΛ.
The missing mass constraint equation is given by

H = 0 = (Epb + Ept − Ep1 − EK+)2 − (~ppb + ~ppt − ~pp1 − ~pK+)2 −M2
Λ (3.33)

In this case, only the parameters of the involved particles p1 and K+ are changed. The
missing mass constraint is also useful for reactions containing non-charged particles,
which cannot be measured by most detector systems (e.g. neutrons). Setting the
missing mass of the other charged particles to the nominal value of the neutral one,
increases the mass resolution of intermediate particles (see e.g. [Sie10]).

(a) (b)

Figure 3.6: Invariant mass of p2 and π− (a) and missing mass of p1 and K+ (b) before
(red) and after (blue) the kinematic refit with invariant and missing mass constraint,
respectively.
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Figure 3.6 shows the invariant mass (p2, π−) and the missing mass (p1,K
+) before

(red) and after (blue) the kinematic refit. The large widths of the unrefitted (raw)
spectra result from the smearing of the original tracks. The spectra of the refitted
tracks show sharp peaks at the Λ mass MΛ = 1.116 GeV/c2. For the missing mass
constraint, the kinematic refit clearly succeeds in shifting all tracks in order to exactly
fulfill the constraint. However, in case of the invariant mass constraint, some refitted
events have a mass slightly larger than the constraint mass, corresponding to the tail
on the right side of the Λ peak in figure 3.6a. About 0.06 % of the refitted events have
a mass which differs by more than 5 MeV/c2 from the nominal Λ mass. The reason
for this effect could be the existence of local minima of the constraint condition,
detaining the parameters ~α from reaching the constraint mass. This hypothesis is
supported by the fact, that the tail cannot be reduced by increasing the number of
iterations in the fit. However, the tail diminishes if the smearing amplitude of the
track parameters decreases. Indeed, the events contained in the tail correspond to a
smearing amplitude within the 3σ quantile of the smearing normal distribution. If
the errors are smaller, the parameters are less shifted by the fit and the probability
of getting trapped by a local minimum is lower.
It is peculiar, that the tail in figure 3.6a only appears on the right side, i.e. at larger
invariant masses. As illustrated in picture 3.4, the zeros of the linearized constraints
are always located on either side of the full constraint condition. This corresponds
to parameters, which are either to large or to small, depending on the particular
constraint function. In case of the invariant mass constraint, the refitted masses are
always slightly larger than the constraint mass. Certainly, the tracks approach the
correct mass after a few iteration steps. However, if the parameters are trapped
within a local minimum, the masses will stay at values, which are noticeably larger
than the Λ mass.

(a) (b)

Figure 3.7: χ2 distribution (a) and p-value distribution (b) of the refit with invariant
mass constraint.



3.3 The kinematic refit for the pp analysis 47

(a) (b)

Figure 3.8: χ2 distribution (a) and p-value distribution (b) of the refit with missing
mass constraint.

Figure 3.7a shows the χ2 distribution for the fit with invariant mass constraint. Since
both, invariant and missing mass constraint, contain only one constraint equation,
the expected ndf of the fit is 1 (according to equation 3.13). The black curve indicates
the fit of equation 3.24 to the spectrum, which delivers a value for the ndf of 0.84.
The deviation from the fitted curve at large χ2 values results from the events with
the excessive invariant mass. In Figure 3.7b, the corresponding p-value distribution
is plotted. It is evenly distributed between 0 and 1, which is expected due to the fact,
that the covariance matrix V~α0 contains the correct errors.
Again, the tail of the invariant mass spectrum appears in the p-value distribution
in the shape of a small peak at low p-values. Since in the further analysis a cut on
small p-values is used to reduce the amount of background (see section 3.3.3), also

Figure 3.9: Pull distributions for 3 of totally 6 parameters after applying the kine-
matic refit with invariant mass constraint. The black lines indicate the fitted normal
distributions, corresponding to the values in the upper right corners.
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Particle 〈∆(dp/p)〉 ∆(dθ) ∆(dϕ)

Invariant mass constraint
p2 8.68% - -
π− 21.9% 8.67% -
Missing mass constraint
p1 21.6% 5.45% 0.79%
K+ 11.6% 5.25% -

Table 3.1: Average improvement of the momentum, θ and ϕ resolution due to the
kinematic refit with invariant and missing mass constraint.

these wrongly fitted events are removed.
The respective distributions for the missing mass constraint are shown in figure
3.8. The fitted value for the ndf is 0.91. In this case, the p-value distribution is
completely flat, because the refitted missing mass spectrum (Figure 3.6b) shows no
tail. This results from the different errors of the particles, involved in the missing
mass constraint.
The correct error input arises also in the shape of the pull distributions (Figure 3.9),
which have the demanded width of σ = 1 and an average of zero. The corresponding
pull spectra for the missing mass constraint look analogous.
Since the kinematic refit partially restores the realistic event topology, not only the
mass resolution of intermediate particles is improved, but moreover the momentum
and angular resolution of the singe particles. The different values are listed in table 3.1.
The momentum and angular resolution is determined by the difference of the measured
values and the Monte Carlo truth values, which constitute normal distributions around
zero (in the absence of systematic errors). The relative momentum resolution dp/p is
calculated for different momentum bins. 〈∆(dp/p)〉 is the average of the differences
in resolution with and without kinematic refit for the respective momentum bins.
The single values are weighted by the propagated errors of the Gaussian fits.

Energy and momentum conservation constraint

This constraint exploits the most fundamental principles of physical processes to
improve the measurements, the conservation of the total energy and momentum. It
affects all measured particles and forces the tracks to fulfill 4-momentum conservation.
With respect to reaction R.6, the four constraint equations are given by

H1 = 0 = Epb + Ept − Ep1 − EK+ − Ep2 − Eπ− (3.34)

~H2,3,4 = ~0 = ~ppb + ~ppt − ~pp1 − ~pK+ − ~pp2 − ~pπ− (3.35)

where pµb = (Eb, ~pb)T and pµt = (Et, ~pt)T are the 4-momenta of the beam and the
target particles, respectively. Equation 3.35 is a vector equation and contains the
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momentum conservation constraints in x, y and z direction. The D-matrix elements
are collected in appendix A.
If the final state does not contain photons13, the energy and momentum conservation
constraint is equal to setting the missing mass of all particles to zero. However, if
photons occur in the particle reaction, the 4-momentum conservation constraint is
not applicable. In this case, the missing mass constraint for all particles can be
applied, since the rest mass of the photon is equal to zero. In principle, this method
can be used to analyze the second decay channel of the ppK− into a Σ0 and a proton,
where the Σ0 further decays into Λ and γ (reaction R.3). Since the γ of the second
channel cannot be detected by FOPI, both reactions end up in the same final state.
The application of the energy and momentum conservation constraint inevitably
rejects events containing the intermediate Σ0. Fitting these events results in large χ2

values, because the 4 charged particles alone do not fulfill 4-momentum conservation
in reality. Though, the employment of the missing mass constraint would keep events
belonging to this reaction.
Figure 3.10 shows the missing energy∆E = Epb+Ept−Ep1−EK+−Ep2−Eπ− and the
missing momentum in z direction∆pz = pz,pb+pz,pt−pz,p1−pz,K+−pz,p2−pz,π− before
(red) and after (blue) applying the kinematic refit with 4-momentum conservation
constraint. The refit clearly succeeds in shifting the missing energy and momentum

(a) (b)

Figure 3.10: (a): Energy conservation. The difference of the initial energy and the
energy of the final particles is illustrated for raw (red) and refitted (blue) events. (b):
Momentum conservation in z-direction. The plot shows the difference of initial and final
z component of the momentum for raw (red) and refitted (blue) particles.

13 The FOPI spectrometer is not capable of detecting photons.
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to zero. Only in very rare cases, the constraint condition is not perfectly fulfilled
after the fit, similar to the invariant mass constraint. For the energy conservation,
these events are located on the left side of the zero peak, resulting from the particular
definition of the constraint function. Even though the failed events are also exclusively
located on the left side in the missing momentum spectrum (figure 3.10b), they can
in principle occur on either side.
The χ2 distribution with a ndf fit value of 3.99 is shown in figure 3.11a. The true ndf
of the refit is 4, due to the four constraint equations (3.34-3.35). The corresponding
p-value distribution (figure 3.11b) is evenly spread, with an excess at low values. This
peak originates from the events where the 4-momentum conservation constraint is
not accurately satisfied. Analog to the invariant mass constraint, the reason for these
events could be local minima of the constraint condition.
A selection of the set of pull distributions is shown in figure 3.12. Again, the spectra
have a width of σ = 1 and a mean value at µ = 0 due to the known errors.

(a) (b)

Figure 3.11: χ2 distribution with ndf = 4 (a) and p-value distribution (b) of the
kinematic refit with energy and momentum conservation constraint. The black curve
indicates the fit to the red χ2 spectrum.
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Figure 3.12: Kinematic refit with energy and momentum conservation constraint.
Shown are the pull distributions for 3 of totally 12 parameters. The black curves
represent the fitted Gauss functions.

(a) (b)

Figure 3.13: Invariant mass of p2 and π− (a) and missing mass of p1 and K+ (b)
before (red spectrum) and after (blue spectrum) the kinematic refit with energy and
momentum conservation constraint.

With high probability, the refitted tracks that fulfill 4-momentum conservation, reflect
the real process to a better extent than the raw tracks. Therefore, observables like
the mass, momentum or angular resolution, should improve with the refit. This effect
is illustrated in figure 3.13, where (a) shows the invariant mass spectrum of p2 and
π− and (b) the missing mass distribution of p1 and K+ before (red) and after (blue)
the kinematic refit. The width of the invariant mass spectrum decreases by 35 %, the
missing mass resolution improves by 82 %. The initial width of the raw missing mass
spectrum is larger compared to the invariant mass distribution due to the different
measurement resolutions for the involved particles. After the refit, the two different
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spectra have equal shape, because the 4-momenta are conserved (see section 2.7.3).
Therefore, the improvement of the missing mass resolution exceeds the enhancement
of the invariant mass resolution.
Table 3.2 contains the changes in momentum and angular resolution as a result of
kinematic fitting with energy and momentum conservation constraint.

3.3.2 Vertex constraints
The procedure of solving for unknown parameters ~z in the constraint conditions was
introduced in section 3.1.2. If ~z contains components of particle vertices, the respective
constraints are called vertex constraints. In contrast to non-vertex constraints, the
particle trajectories have to be fully determined, including the emission points of the
tracks. Therefore, all six parameters ~αmix,i = (1/pi, θi, ϕi, xx,i, xy,i, xz,i)T have to be
included in the fit.
The kinematic refit for the pp analysis includes intersection constraints of two particles,
respectively and a secondary vertex constraint, which is especially customized for the
exclusive analysis of reaction R.6.

Intersection constraint

The intersection constraint forces the tracks of two particles to intersect at a common
space point. This constraint vertex is parameterized by the vector of unknowns ~z
in the Lagrange equation 3.14. As explained in section 3.1.2, the kinematic refit
calculates a new set of parameters ~α and a fitted vertex ~z. In this respect, it can
be chosen whether the tracks have to intersect at a fixed vertex, which has to be
given as input in advance. The other possibility, which is going to be discussed in
the following subsection, is to let the refit place the new vertex ~z within an error
band around an initial vertex ~z0. The vertex covariance matrix V~z0 determines the
range of the error ellipsoid. If the errors are set to very large values, the vertex can
be arbitrarily placed by the refit. The final position ~z will then be determined by the
other constraints (e.g. energy and momentum conservation), which govern the shifts
of the particle tracks. This type of vertex constraint is used in the pp analysis.
Concerning the underlying reaction R.6, the intersection constraint can be used to
force the daughter particles p2 and π− of the Λ hyperon to intersect at a Λ vertex ~zΛ.
The tracks are represented by their momentum ~pi and an emission point ~xi, at which
the momentum is evaluated. The emission points are the points of closest approach

Particle 〈∆(dp/p)〉 ∆(dθ) ∆(dϕ)

p 58.9% 12.3% 1.39%
K+ 19.1% 10.5% 12.7%
π− 14.5% 16.4% 1.28%

Table 3.2: Average improvement of the momentum, θ and ϕ resolution due to the
kinematic refit with energy and momentum conservation constraint.
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(poca) to the beam axis (see Figure 3.14).
For reasons of simplification, the particle tracks are approximated as straight lines.
This assumption is motivated by the short Λ decay length of cτΛ ≈ 7 cm. In order to
check if the approximation is legitimate, the deviation of the straight tracks from real
bended curves within the distance of 15.5 cm from the target to the SiΛVio-B plane
was estimated using simulations. The polar angle deviation is completely negligible,
whereas the maximum difference in the ϕ angle is 0.4◦ for protons and 1.8◦ for pions.
This deviation is acceptable, in particular since around 67 % of the Λ’s already decay
within half the distance. The straight tracks are represented by the following vector
equation.

~ri = ~xi + τi ~pi (3.36)

where τi is a variable scalar. The condition, that the p2 and π− tracks intersect at a
Λ vertex ~zΛ, reads

~rp2(~zΛ)− ~rπ−(~zΛ) = ~xp2 + τp2(~zΛ) ~pp2 − ~xπ− − τπ−(~zΛ) ~pπ− = ~0 (3.37)

The coefficients τi(~zΛ) times the length of the momenta give the distance between
the emission points of the particles and the Λ vertex.

τi(~zΛ) = |~zΛ − ~xi|
|~pi|

(3.38)

The full intersection constraint condition is a 3-component vector equation and is

Figure 3.14: Scheme of the Λ decay into p2 and π−. The tracks are represented by
straight lines, which are illustrated with the respective emission points ~xi and direction
vectors ~pi.
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given by the following expression.

~H(~α,~zΛ) = ~0 = ~xp2 + Cp2
|~zΛ − ~xp2 |
|~pp2 |

~pp2 − ~xπ− − Cπ−
|~zΛ − ~xπ− |
|~pπ− |

~pπ− (3.39)

The coefficients Ci are defined in the following way.

Ci = zΛ,z − xz,i√
(zΛ,z − xz,i)2

=
{

+1 if xz,i < zΛ,z

−1 if xz,i > zΛ,z
(3.40)

They are either 1 or −1, depending on if the z-component of the emission points xz,i
is smaller or larger than the z-component of the Λ vertex zΛ,z. These coefficients
are necessary, since the leading signs in front of the factors τi(~zΛ) have to change,
if the emission points are located in front of or behind the Λ vertex with respect
to the direction of the momentum ~pi. However, the terms |~zΛ − ~xi| themselves are
independent of this relation, because the different signs are canceled by the squares.
Including now the coefficients Ci enables the kinematic refit to change the leading
signs in the constraint equations autonomously14. Since the Ci are constant, the
derivatives of the constraints (D-matrix elements), which determine the new parame-
ters ~α, are unchanged. The D-matrix elements are listed in appendix A.
The initial vertex position ~z0 is principally unknown in advance.

Figure 3.15: Linear depen-
dence of 3 vectors within a com-
mon plane.

Therefore, the kinematic refit reconstructs the
center of the closest connection between the two
tracks and defines this space point as initial ver-
tex position. The corresponding calculations are
shown in appendix B.
A criterion to check, whether the intersection
constraint is in fact fulfilled after the kinematic
refit, is the linear dependence of 3 vectors within
a common plane, also referred to as coplanarity.
If the tracks intersect, the two direction vectors
~pp2 and ~pπ− and the difference vector of the two
emission points ~s ≡ ~xp2 − ~xπ− lie in a common
plane (Figure 3.15). From this, it follows that
one of the three vectors can be written as a linear
combination of the two others, they are linear
dependent. Mathematically, the determinant of
a matrix containing linear dependent column vec-
tors is zero. Therefore, the particle tracks are

14 It could for example be the case, that fulfilling all constraints would require the Λ vertex to move
on the other side of the emission point of a certain particle with respect to its momentum vector.
This would change the leading signs of the respective terms in the constraint equations. The
coefficients Ci allow these signs to change freely during the refitting process.
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coplanar if the determinant

Dint =

∣∣∣∣∣∣∣∣
px,p2 px,π− sx

py,p2 py,π− sy

pz,p2 pz,π− sz

∣∣∣∣∣∣∣∣ (3.41)

is equal to zero. Though, in principle the tracks could also be mutually parallel. This
case can be excluded by calculating the angle between the two momentum vectors
and rejecting values close to zero. Figure 3.16a shows the determinant Dint for
unrefitted (red) end refitted (blue) tracks with angles unequal to zero. The peak
at zero for refitted events clearly shows, that the two tracks indeed intersect after
applying the kinematic refit. The p-value distribution (Figure 3.17b) is flat and the
pull distributions have the expected shape (Figure 3.18). The pull distributions of
the 1/p parameters are always zero, since the respecting D-matrix elements vanish.
This originates from the fact, that the kinematic refit can shift the tracks in order to
intersect by varying the track angles exclusively. A change in the magnitude of the
particles momenta would not result in different track orientations. The expected ndf
of the fit is the number of constraints minus the number of vertex parameters, as
explained in section 3.1.2, which should be 0 in case of the intersection constraint.
However, figure 3.17a shows the χ2 distribution of the fit with a fitted ndf value of
0.79.
The distribution of the ~zΛ vertex y-component is displayed in figure 3.16b. The Monte
Carlo truth values are represented by the black curve, the spectra of the unrefitted
and refitted events are indicated in red and blue, respectively. A clear broadening
of the raw distribution due to the smearing is visible. However, the spectrum of
refitted tracks is nearly identical. This means, that the kinematic refit forces the
tracks to intersect at a new vertex, that is very close to the initial vertex position,
which is determined by the center of closest distance between the two original tracks.
Moreover, the intersection constraint has no noticeable effect on the other observables
such as mass, momentum or angular resolutions either.

Secondary vertex constraint

The kinematic refit for the pp analysis additionally contains a secondary vertex
constraint, which is designed exclusively for the underlying reaction R.6. Though, it
can be principally used for every reaction with four particles in the final state, where
two tracks stem from a common mother particle. The secondary vertex constraint
contains 9 single constraint conditions, which are defined via the following equations.

~H1−3(~α,~zΛ) = ~0 = ~xp2 + Cp2
|~zΛ − ~xp2 |
|~pp2 |

~pp2 (3.42)

− ~xπ− − Cπ−
|~zΛ − ~xπ− |
|~pπ− |

~pπ−
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(a) (b)

Figure 3.16: (a): Intersection determinant Dint for raw (red) and refitted (blue) tracks,
(b): y-component of the Λ vertex ~zΛ for Monte Carlo truth values (black), raw (red) and
refitted (blue) tracks.

~H4−6(~α,~zΛ,~zPrim) = ~0 = ~xp1 + Cp1
|~zPrim − ~xp1 |
|~pp1 |

~pp1 (3.43)

− ~zΛ − CΛ
|~zPrim − ~zΛ|
|~pp2 + ~pπ− |

(~pp2 + ~pπ−)

(a) (b)

Figure 3.17: χ2 distribution (a) and p-value distribution (b) of the kinematic refit with
intersection constraint.
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Figure 3.18: Kinematic refit with intersection constraint. The upper row shows the
pull distributions for 3 momentum parameters. The distributions for the 1/p parameters
vanish, since the corresponding D-matrix elements are equal to zero. The lower row
shows the pull distributions for 3 emission point parameters. The black curves indicate
the fitted Gauss functions.

~H7−9(~α,~zΛ,~zPrim) = ~0 = ~xK+ + CK+
|~zPrim − ~xK+ |
|~pK+ |

~pK+ (3.44)

− ~zΛ − CΛ
|~zPrim − ~zΛ|
|~pp2 + ~pπ− |

(~pp2 + ~pπ−)

Analog to the other coefficients, CΛ is defined as

CΛ = zΛ,z − zPrim,z√
(zΛ,z − zPrim,z)2

=
{

+1 if zPrim,z < zΛ,z

−1 if zPrim,z > zΛ,z
(3.45)

The constraint fitting procedure consists of three single steps. In the first step
(equation 3.42), the p2 and π− are forced to intersect at a common Λ vertex ~zΛ
(equal to the single intersection constraint of the previous subsection). The Λ
particle is reconstructed via vector addition from the daughter particles p2 and π−:
~pΛ = ~pp2 + ~pπ− . The emission point of the Λ is the secondary vertex ~zΛ. In the next
two steps (equations 3.43 and 3.44), the reconstructed Λ is forced to intersect with
the other two particles p1 and K+ at a primary vertex ~zPrim.
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Since the constraint equations are essentially three single intersection constraints, the
quality spectra are expected to have shapes analog to the single constraint. Indeed,
the χ2, p-value and pull distributions resemble the spectra of the single intersection
constraint, however, they slightly deviate from the correct shape which cannot be
traced back to a wrong error input (Figure 3.20). Also the determinants Dint,i of
all intersecting particle combinations peak at zero, so they in fact intersect (Figure
3.19 shows the intersection determinant for the reconstructed Λ and p1). Hence, the
obvious reason might be, that the number of constraint conditions is so large, that
the kinematic refit starts to deviate from its expected behavior. Nevertheless, the
discrepancies are small compared to the effect of wrong errors, which are discussed in
the next subsection.
Figure 3.21 shows the spatial resolutions of the primary vertex, where the three
particles p1, K+ and Λ intersect. The black curve represents the true Monte Carlo
values, the raw and refitted spectra are illustrated in red and blue, respectively.
Obviously, an improvement of the primary vertex resolutions is obtained by applying
the secondary vertex constraint. The corresponding values are listed in table 3.3.
Analog to the single intersection constraint, the secondary vertex constraint has no
impact on momentum, mass, angular and secondary vertex resolutions.

3.3.3 Effect of wrong errors
In the previous cases, the errors of the kinematic refit were exactly known. Hence,
the different fit quality distributions had the expected shape. However, in the real
experiment, the uncertainties are never perfectly known and have to be estimated.
Since the χ2, p-value and pull distributions are sensitive to the correct error input,
they can be used to optimize the uncertainties. In any case, the kinematic refit
shifts the particle tracks in order to satisfy the constraints, even if the corresponding
errors are not correct. If the uncertainties are underestimated, the parameters are

Figure 3.19: Kinematic refit with secondary vertex constraint. Intersection determinant
of the reconstructed Λ and the p1. After the fit (blue), the tracks clearly intersect. This
is also valid for the other intersecting particle combinations.
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(a) (b)

Figure 3.20: χ2 distribution (a) and p-value distribution (b) of the kinematic refit with
secondary vertex constraint.

∆σPrim,x ∆σPrim,y ∆σPrim,z

13.8% 14.3% 10.6%

Table 3.3: Improvement of the primary vertex resolution due to the kinematic refit
with secondary vertex constraint.

moved outside of their error band, causing a shift which is larger than the refit would

(a) (b) (c)

Figure 3.21: Kinematic refit with secondary vertex constraint. Shown are the primary
vertex (p1, K+, Λ) distributions. The Monte Carlo truth values (black), the raw (red)
and the refitted (blue) events are illustrated.
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expect due to the covariance matrix. This generally results in larger χ2 values15 .
The effect of manually increasing the errors of 1/p by 25 % compared to the true
values is illustrated in figure 3.22a, where energy and momentum conservation is
used as constraint. The shown χ2 distribution resembles a distribution corresponding
to a larger ndf. The ndf value of the fit is 4.84, however the distribution slightly
deviates from the theoretical curve. The larger χ2 leads to a lower p-value, the
distribution of which is non-flat with a shift to the left side (figure 3.23a). The effect
of underestimated errors on the pull distributions is a broadening (σ > 1), which
is shown in figure 3.24a. Also the pull distributions of the angular parameters are
broadened, even though only the 1/p error is wrong. This originates from the attempt
of the kinematic refit to compensate the small error in 1/p direction by partially
exceeding the changes of the other parameters. However, the pull functions are still
centered around zero. An underestimation of the angular errors within a realistic
range does not show any noticeable effect on the discussed distributions.
Figures 3.22b and 3.23b show the implications of overestimated errors. For this
purpose, the errors of the 1/p parameters are scaled down by 25 %. In this case,
the error bands of the tracks are larger than necessary, hence the refit shifts the
parameters ~α less than it is in principle allowed due to the covariance matrix. This
results in smaller χ2 values and larger p-values. The corresponding χ2 distribution is
shifted to smaller ndf, providing a fit value of 3.19. Again, the spectrum deviates
from the theoretical pdf function. The effect on the pull distributions is contrary to
the previous case of underestimated errors, causing a reduction of the width (σ < 1)

(a) (b)

Figure 3.22: χ2 distributions for the kinematic refit with energy and momentum
conservation constraint. (a): underestimation of errors by 25 % (b): overestimation of
errors by 25 %. The black lines represent the fitted χ2 curves.

15 Notice, that the errors sit in the denominator of the χ2 equation (3.2). Therefore, smaller errors
result in larger χ2 values, given the same change of parameters in the nominator.
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(a) (b)

Figure 3.23: p-value distributions for the kinematic refit with energy and momentum
conservation constraint. (a): underestimation of errors by 25 % (b): overestimation of
errors by 25 %.

(Figure 3.24b).
If the elements of the covariance matrix V~α0 are not completely Gaussian distributed
but additionally include systematic errors, the pull distributions are shifted along the
x-axis, whereas their width is unaffected. Figure 3.24c shows the pull distribution of
the kaons 1/p parameter, where the 1/p parameters of all particles are systematically
increased by 5 %. Also the χ2 and p-value spectra (Figure 3.25) deviate from the
theoretical curves. However, it is hardly possible to detect the presence of systematic
errors by looking at these distributions alone. Only the pull distributions are sensitive

(a) (b) (c)

Figure 3.24: Pull distributions for the kinematic refit with energy and momentum
conservation constraint. (a): underestimation of 1/p error by 25 % (b): overestimation
of 1/p error by 25 % (c): systematic shift of 1/p parameter by 5 %. The fitted normal
distributions are indicated by the black curves.



62 3 The Kinematic Refit

(a) (b)

Figure 3.25: Effect of a systematic shift by 5 % of the parameters 1/p. χ2 distribution
(a) and p-value distribution (b) of the refit with energy and momentum conservation
constraint.

to the statistic or systematic nature of the uncertainties. If the errors possess a
systematic component, they are no longer centered around zero. Hence, the Gauss-
Markov theorem is not valid anymore in the presence of systematic errors, which
can lead to an unexpected behavior of the kinematic refit. In this case, the new
parameters ~α are not guaranteed to have minimum variance and to be unbiased.

3.3.4 Consequences of background
In the preceding examples, the kinematic refit was applied to events, that fulfilled the
constraint conditions in the beginning, exclusively. However, in the real experiment,
a certain amount of background will always be present. This background can for
example be caused by events with misidentified particles. Of course, these events did
not meet the different constraint conditions originally. Nevertheless, the kinematic
refit also shifts the background events such, that the corresponding particles fulfill
the constraints after the fit. Since the variation of the respective parameters will be
larger than for the correct events in most of the cases, the refitted background will
result in large χ2 values. The corresponding p-value distribution has a peak at low
values, similar to the spectrum shown in figure 3.23a. Due to the fraction of events,
that are stronger shifted compared to the assumed errors, the pull distributions show
larger tails. This leads to a non-Gaussian shape of the distributions.
In the real analysis, the kinematic refit will inevitably be applied to a certain fraction
of background events. Usually, the background can be reduced by cutting on low
p-values. For this purpose, a significance α is defined, which is the area to the
right of the corresponding significance level beneath the χ2 distribution (see footnote
9). The refitted events are rejected, if the p-value is smaller than the significance:
p − value < α. However, for this cut it is important to determine the covariance
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matrix V~α0 as careful as possible. If for instance the errors are too small, the p-value
distribution is shifted to low values (see figure 3.23a). In this case, the cut on low
p-values will reject a lot of non-background events as well. In contrast, if the errors
are overestimated, the p-values cumulate at high values (see figure 3.23b), rendering
the cut ineffective [Sie10].
The behavior of refitted background events using the example of full scale pp simula-
tions is discussed in section 4.2.2.





4 Exclusive analysis of the reaction pp→ pK+Λ

This chapter presents the exclusive analysis of the reaction pp→ pK+Λ, measured
at a beam energy of 3.1 GeV with the FOPI spectrometer. The main goal of the
underlying analysis is the investigation of the predicted kaonic bound state ppK−,
exploiting its decay into Λ and p. The reaction of interest reads as follows.

(R.2)p + p −→ ppK− + K+

−→ Λ + p

−→ p + π−

Before analyzing the ppK−, the intermediate Λ hyperon has to be reconstructed,
which decays into p and π− with a branching ratio of 64 % (see section 1.3). As
described in the previous chapter, the improvement of the Λ signal quality and
the reduction of background are the main motivations for the development of the
kinematic refit. After an introduction about the identification of pK+Λ events, the
results of applying the kinematic refit to full scale simulations and to experimental
data are discussed in the following sections.

4.1 Identification of pK+Λ events
The first step in the exclusive analysis of the reaction pp→ pK+Λ is the identifica-
tion of all four charged particles in the final state (p1, K+, p2, π−). As described
in section 2.7, the particles can be separated via the time of flight or energy loss
information in combination with the momentum of the particles, delivered by the
different sub-detectors of the FOPI spectrometer. For this purpose, 2-dimensional
graphical cuts are used in order to select the different particle species.
Particles emitted in the HELITRON acceptance are identified via the time of flight
information measured by the PLAWA1. Figure 4.1 shows the momentum divided by
the charge as a function of the particle velocity v for experimental data. The black
lines represent the graphical cuts, chosen to select the protons and the negatively
charged pions. Particles whose velocity and momentum fall within these cuts are
identified as protons or pions, respectively. Consequently, the measured masses

1 A separation of the different particles using the energy loss in the HELITRON drift chamber is
not possible due to the limited resolution.

65
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Figure 4.1: Identification of charged particles measured with the HELITRON and the
PLAWA. The graphical cuts for the separation of protons and negatively charged pions
are indicated by the black curves.

are set to the nominal values in order to determine the 4-momenta2. However, an
identification of kaons using these observables is not possible due to the limited time
resolution of the PLAWA and HELITRON detectors.
Particles which are emitted into the backward hemisphere are either identified via the
energy loss in the CDC drift chamber or via the time of flight information delivered
by the MMRPC. Figure 4.2a shows the energy loss as a function of the momentum
per charge for particles measured with the CDC for experimental data. Again, the
graphical cuts are indicated by the black lines. Even though the separation of p
and π− is more distinct than for HELITRON tracks (Figure 4.1), an identification
of kaons is not possible. In contrast, the excellent time resolution of the MMRPC
allows to separate kaons from protons and pions up to several hundreds of GeV.
This is illustrated by figure 4.2b. The black lines show the theoretical positions of
the different particle species, the graphical cut used for the kaon identification is
indicated by the red curves. Since the particle identification with the RPC requires
the measurement of the momentum with the CDC, a good matching capability
of these two detectors is necessary. The investigation of the CDC-RPC matching
efficiency with help of elastic proton events is discussed in section 5.4.1.

2 At this point, unphysical background is introduced in case of misidentification, since the wrong
energies are assigned to the respective particles.
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(a)

(b)

Figure 4.2: Identification of charged particles in the backward hemisphere of the FOPI
spectrometer. (a): Energy loss dE/dx in the CDC vs. momentum per charge. The
black curves represent the graphical cuts for the separation of protons and pions. (b):
CDC momentum per charge as a function of the particle velocity v measured with the
MMRPC. The theoretical positions of the different particles according to equation 2.11
are indicated by the black lines. The kaon cut is shown by the red curves. The cutoff at
large velocities results from a cut on the mass differences between CDC and MMRPC in
course of the matching.



68 4 Exclusive analysis of the reaction pp→ pK+Λ

Figure 4.3: Scheme of the pre-selection process. The particle combination which results
in the smaller χ2 value is accepted and used for the actual refit.

The next step after the identification of the final state particles is the assigning of
the right proton to the Λ decay. Since two protons occur in the final state of interest,
it is not known in the first place, which proton originally stems from the decay of
the intermediate Λ. For this purpose, a pre-selection method based on the repeated
application of the kinematic refit is implemented. The scheme of the procedure is
shown in figure 4.3. The two protons are referred to as pa and pb in this illustration.
First, the kinematic refit is applied based on the hypothesis, that pa stems from the Λ
decay: Λ→ pa + π−. For the pre-selection, the energy and momentum conservation
and the Λ invariant mass constraints are used. The invariant mass constraint is
crucial, since it is sensitive to the correct combination of proton and pion. The refit
calculates a χ2

a value, which is stored for further comparison. The refitted parameters
~α are discarded and reseted to the original values ~α0. Second, the kinematic refit
with the same constraint conditions is repeated with the hypothesis, that the other
proton pb was created in the Λ decay: Λ→ pb + π−. Again, a χ2

b value is calculated,
which is compared to the χ2

a of the previous refit. Since one hypothesis is certainly
wrong, the corresponding χ2 value will be larger than the χ2 of the refit with the
right particle combination. Finally, the parameters are again reseted to the unrefitted
values ~α0 and the proton pion combination, which corresponds to the smaller χ2,
is chosen. This assignment of the final state particles is the input for the actual
kinematic refit, which calculates the new set of parameters ~α for the further analysis.
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Figure 4.4: Preselection with kinematic refit for full scale pK+Λ simulations. The
blue distribution corresponds to the fitted combinations of p and π− with the smaller χ2

value. The spectrum of the larger χ2 values is shown in red. The black lines represent
the fitted χ2 curves to the spectra, yielding the ndf values in the upper right corner. The
true ndf of the refit is equal to 5, due to the number of constraint equations.

The pre-selection procedure is tested with full-scale simulations of reaction R.6 (see
section 4.2.1). Figure 4.4 shows the χ2 distributions for all accepted (blue) and rejected
(red) proton pion combinations. The distribution for the accepted combinations has
the characteristic shape and corresponds to a fitted ndf value of 5.23. The true ndf
of the fit is 5, since one invariant mass and four energy and momentum conservation
constraint equations are applied. In contrast, the red spectrum, corresponding to the
wrong combinations, is broadly distributed and hardly agrees with the theoretical
shape of the χ2 curve. The respective fitted ndf value is 11.7, reflecting the background
character of this distribution.
Figure 4.4 clearly demonstrates, that an accurate distinction between the right and
the wrong combination of p and π− is achieved by the pre-selection procedure.

4.2 Application of the kinematic refit to full scale simulations
Before the kinematic refit is applied to the experimental data, it is tested with
full scale simulations. First, the particles are created with an event generator (e.g.
PLUTO or UrQMD) as straight lines, satisfying energy and momentum conservation.
Subsequently, the generated particle tracks are further propagated through simulated
detector material under consideration of the deflection in a magnetic field [F+10; UrQ].
This is done with the software GEANT, which additionally simulates the energy loss
of the particles in the detectors. The detector response to the simulated hit points is
modeled with digitizers, which take into account realistic uncertainties and electronic
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Particle σ(1/p) σ(θ) σ(ϕ) σ(x) σ(y) σ(z)

CDC
p 3.80 % 0.52◦ 0.40◦ 0.60 cm 0.60 cm 1.3 cm

K+ 3.40 % 0.57◦ 1.7◦ 0.40 cm 0.40 cm 1.2 cm

π− 5.80 % 0.80◦ 0.92◦ 0.60 cm 0.60 cm 1.4 cm

HELITRON
p 17.0 % 0.49◦ 0.57◦ 0.010 cm 0.010 cm 0.20 cm

π− 13.4 % 2.6◦ 3.6◦ 0.20 cm 0.20 cm 1.0 cm

Table 4.1: Errors for the kinematic refit applied to full scale simulations. The values are
extracted from pull distributions, where the kinematic refit with energy and momentum
conservation constraint is applied to simulations of the reaction pp→ pK+Λ.

noise [GEA; Sie10]. The signals, that are produced with this method, are treated in
the same way as the real experimental signals, passing the whole analysis including
particle identification. In the following analysis, all possible combinations of trigger
settings are accepted (see section 2.6).
In contrast to the application of the kinematic refit to manually smeared tracks
(see section 3.3), the covariance matrix V~α0 is not exactly known in advance in
case of full-scale simulations. Therefore, the errors, which are listed in table 4.1,
are extracted from the adjustment of pull distributions3. Nevertheless, the errors
have always certain correlations, especially according to equation 2.9. Hence, it is
impossible to adjust the uncertainties such, that all pull distributions have a variance
of σ = 1. In fact, the errors are tuned in order to generate pull distributions with
variances as close as possible to σ = 1 in average.
It is peculiar, that the spatial errors for HELITRON tracks are noticeably smaller
than for CDC tracks. This results from HELITRON tracks that have a hit point in
the SiΛVio detector, which has well determined spatial components.

Particle 〈σ(1/p)〉 σ(θ) σ(ϕ)

CDC
p 3.66 % 0.091◦ 0.83◦

K+ 4.27 % 0.23◦ 0.26◦

π− 8.34 % 1.0◦ 2.0◦

HELITRON
p 15.3 % 0.24◦ 0.25◦

π− 14.3 % 1.3◦ 1.0◦

Table 4.2: Errors of the momentum parameters extracted from simulations of the
reaction pp→ pK+Λ.

3 In the following analysis, the non-diagonal elements of the covariance matrix are neglected.
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The errors extracted from the pull distributions can be compared to the uncertainties
that occur in the simulations and that can directly be estimated. The corresponding
values for the momentum parameters are listed in table 4.2. The uncertainty in 1/p is
calculated as the average of the errors σ(1/p) for different momentum bins, weighted
with the respective fitting errors. The angular errors are defined as the width of the
differences between measured and simulated angles. Typically, the corresponding
distributions should be Gaussian distributed around zero, however, the obtained
spectra for the θ angles show deviations from normal distributions and systematic
shifts. This is a clear indication for systematic errors in the θ parameters, which also
propagate to the momentum parameters. Due to these effects, the errors extracted
from the pull distributions (table 4.1) and directly from the simulations (table 4.2)
slightly differ. Nevertheless, the uncertainties have the same order of magnitude.
Since the tests in the previous chapter showed, that the improvement of the mass,
angular and momentum resolutions, achieved by applying the vertex constraints, is
negligible, they are not included in the further analysis.

4.2.1 Simulation of the channel pp→ pK+Λ

Analog to the tests in the previous chapter, the following reaction is simulated with
the Monte Carlo based PLUTO event generator (4 · 105 events) with a beam energy
of 3.1 GeV [F+10].

(R.6)p + p −→ Λ + p1 + K+

−→ p2 + π−

Invariant mass constraint

The invariant mass constraint is important for the pre-selection, described in the
previous section, since it is sensitive to the correct combination of proton and pion
that stem from the decay of the intermediate Λ. Moreover, it can be used in the final
step of the ppK− analysis, where the invariant mass (p1, Λ) and the missing mass
of the K+ is investigated. Setting the invariant mass (p2, π−) equal to the Λ mass
MΛ should improve the invariant mass, and in case of simultaneous application of
energy and momentum conservation also the missing mass resolution, provided that
the ppK− is observed.
Figure 4.5a shows the invariant mass (p2, π−) for raw (red) and refitted (blue) events.
Analog to picture 3.6a, the spectrum shows a tail on the right side of the Λ mass peak.
The corresponding events result in a peak at low p-values, which is shown in figure
4.6b. The origin of these events can be either the existence of local minima of the
constraint equation or misidentified p π− combinations. A significance of α = 0.05
(gray area beneath the p-value spectrum), defines a cut on low p-values, which nearly
completely removes the tail in the invariant mass (p2, π−) spectrum (Figure 4.5b).
The estimation of this value is described in section 4.2.2. At the same time, the
constrained Λ mass peak is not noticeably shrinked. This shows, that the p-value cut
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(a) (b)

Figure 4.5: Invariant mass of p2 and π− before (red) and after (blue) the kinematic
refit with invariant mass constraint applied to pK+Λ simulations. Picture (b) shows the
refitted spectrum (blue) after a cut on the p-value (α = 0.05) is applied. The tail on the
right side of the Λ peak is nearly completely removed, while the peak does not shrink
noticeably.

(a) (b)

Figure 4.6: Kinematic refit with invariant mass constraint applied to pK+Λ simulations.
(a): χ2 distribution with ndf = 1. The black curve represents the fit to the spectrum.
(b): p-value distribution. The gray area indicates the significance of α = 0.05, which is
used as a cut on low p-values.



4.2 Application of the kinematic refit to full scale simulations 73

Figure 4.7: Kinematic refit with invariant mass constraint applied to pK+Λ simulations.
Shown are the pull distributions for the three momentum parameters of the particle p2
in the HELITRON. The black curves represent the fitted Gauss functions.

effectively removes background events, which do not fulfill the constraints after the
refit. The χ2 distribution is shown in figure 4.6a, yielding a fitted ndf value of 0.92.
The pull distributions (Figure 4.7) have a Gaussian shape and correct variances.
However, the pull spectra of the 1/p and θ parameters for HELITRON tracks and of
the θ parameters for the CDC show a slight shift along the x-axis. This indicates the
presence of systematic errors in θ, which can propagate to the momentum parameters
(equation 2.9). These errors are observed for both, CDC and HELITRON tracks.

(a) (b)

Figure 4.8: Kinematic refit with energy and momentum conservation constraint applied
to pK+Λ simulations. (a): The difference of initial and final energy is illustrated for raw
(red) and refitted (blue) events. (b): The plot shows the difference of initial and final x
component of the momentum for raw (red) and refitted (blue) particles.



74 4 Exclusive analysis of the reaction pp→ pK+Λ

(a) (b)

Figure 4.9: Kinematic refit with energy and momentum conservation constraint applied
to pK+Λ simulations. (a): χ2 distribution with ndf = 4 (b): p-value distribution. The
black curve indicates the fit to the red χ2 spectrum.

Figure 4.10: Kinematic refit with energy and momentum conservation constraint
applied to pK+Λ simulations. Shown are the pull distributions for the three momentum
parameters of the particle p2 in the CDC. The black curves represent the fitted Gauss
functions.

Energy and momentum conservation constraint

By far the most important and effective constraint condition of the kinematic refit is
the energy and momentum conservation. It improves the parameters of all final state
particles coincidently and exploits the most fundamental physical laws.
Figure 4.8 shows the missing energy (a) and the x-component of the missing mo-
mentum (b) for raw (red) and refitted (blue) events. Again, the spectra show small
tails containing events, that do not exactly fulfill the constraints after the refit. In
this case, these tails cannot be removed by cutting on low p-values, even though the
corresponding spectrum (Figure 4.9b) has an excess at low values. The χ2 distribution
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(a) (b)

Figure 4.11: Invariant mass of p2 and π− (a) and missing mass of p1 and K+ (b)
before (red spectrum) and after (blue spectrum) the kinematic refit with energy and
momentum conservation constraint applied to pK+Λ simulations.

of the refit with a fitted ndf value of 4.16 is illustrated in figure 4.9a. Obviously,
background is not expected to appear by applying this constraint, since only one
reaction (R.6) is contained in the simulations. In contrast to the invariant mass
constraint, which requires the correct assignment of the proton originating from the
Λ decay, the energy and momentum conservation constraint acts on all particles,
independent of the particular proton ID. Therefore, the peak at low p-values only
contains correct pK+Λ events and a cut has no further consequence on the other
spectra besides the reduction of statistics. One fraction of this peak contains the
previously discussed local minima, which are always present. The other fraction could
emerge from the existence of systematic errors, which can be observed by looking
at the pull distributions (Figure 4.10). Analog to the invariant mass constraint, the
spectra show systematic shifts in the θ and 1/p parameters for HELITRON and in
the θ parameters for CDC tracks. As explained in section 3.3.3, the Gauss-Markov
theorem is no longer valid in the presence of systematic errors. Therefore, the kine-
matic refit does not inevitably deliver new parameters which are unbiased and have

Observable σraw σrefit ∆σ

M(p2,π
−) 9.3 MeV/c2 7.3 MeV/c2 22%

MM(p1,K
+) 57 MeV/c2 7.3 MeV/c2 87%

Table 4.3: Resolutions of raw and refitted mass spectra for the kinematic refit with
energy and momentum conservation constraint applied to pKΛ simulations.
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Nr. Reaction p+ p→ σ (mb) Bchannel/S Remaining after cut

Strangeness channels
1 p+K+ + Λ 4.3 · 10−2 1 63.3%
2 p+K+ +Σ0(→ Λ+ γ) 1.8 · 10−2 356 · 10−3 16.9%
3 n+K+ +Σ+ 3.2 · 10−2 2.82 · 10−3 0.00%
Non-strangeness channels
4 p+ p 9.7 18.6 · 10−3 0.00%
5 p+ n+ π+ 9.4 16.9 · 10−3 0.00%
6 p+ n+ π+ + π0 4.2 15.8 · 10−3 0.00%
7 p+ p+ π0 3.8 6.77 · 10−3 0.00%
8 p+ p+ π+ + π− 2.7 327 · 10−3 0.34%
9 p+ n+ π+ + π+ + π− 1.5 12.4 · 10−3 0.00%
10 n+ n+ π+ + π+ n.a. 2.26 · 10−3 0.00%

Table 4.4: Simulated pp reaction channels, which are identified as pK+Λ events
(channel 1). The values for the cross sections are determined for a beam energy of 3 GeV.
The value Bchannel/S is defined as the number of events belonging to the respective
background channel after the event selection divided by the number of channel 1 events.
The right column quotes the fractions of these single channels, which remain after the
p-value cut with a significance of α = 0.05. For the kinematic refit, the energy and
momentum conservation constraint is used.

minimum variance. Moreover, the refit tries to compensate the systematic errors by
a statistical procedure. In principle, the kinematic refit can be used to estimate these
systematic errors by the systematic study of the effect of manually imposed errors on
the pull distributions.
Nevertheless, the mass resolution of the Λ is still improved, which is demonstrated
by figure 4.11. Panel (a) shows the invariant mass spectrum of p2 and π− for raw
(red) and refitted (blue) events. The kinematic refit improves the invariant mass
resolution by 22 % (see table 4.3). The raw missing mass (p1, K+) spectrum is
broader than the invariant mass (p2, π−) distribution, since the different particles are
measured by various detectors with different probabilities, according to the kinematics
of the reaction. Therefore, the measurements of the different particles have varying
uncertainties. After the refit, as a consequence of energy and momentum conservation,
the missing and invariant mass spectra have equal shape and width. This leads to an
improvement of the missing mass resolution of about 87 %.

4.2.2 Simulation of the pp reaction
In order to investigate the behavior of the kinematic refit when applied to background
reactions, the pp reaction at 3.1 GeV is simulated with 9.5 · 105 events with the
UrQMD (Ultrarelativistic Quantum Molecular Dynamics) transport model, which
includes the most common reaction channels [UrQ]. The channels, which are present
as background after the event selection due to misidentification, are listed in table 4.4
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Figure 4.12: Kinematic refit with energy and momentum conservation constraint
applied to pp simulations. The p-value distributions of the different strangeness (upper
panel) and non-strangeness (lower panel) channels are shown as colored curves. The
total p-value distribution is represented by the black curves. The black lines illustrate
the position of the p-value cut, defined by the significance α = 0.05, which is determined
by maximizing π· ε.
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together with the respective cross sections. Since the two channels 1 and 2 only differ
by the photon which is produced in the Σ0 decay of the latter, they result in the
same final state due to the incapability of the FOPI spectrometer of measuring γ’s.
Therefore, the misidentification of reaction 2 as channel 1 is expected to yield the
biggest contribution to the background. Another strong contribution is associated
with channel 8, where the π+ can be misidentified as a K+, since the corresponding
p/q vs. v curves in figure 4.2b partially overlap. The other reactions can be mistaked
for pK+Λ events in combination with fake-tracks, which do not correspond to any real
process. Since the probability for these incidents is rather small, the corresponding
channels have a minor contribution to the background compared to reactions 2 and
8. The S/B ratio, taking all background channels into account, is 1.319.
In order to study the behavior of background, which is subject to the kinematic
fitting procedure, the refit with energy and momentum conservation constraint is
applied to the simulated pp events. The upper panel of figure 4.12 shows the p-value
distribution of the fit (black), where the single contributions of the three strangeness
channels (reactions 1-3 in table 4.4) are indicated in different colors. As discussed in
section 3.3.4, the kinematic refit has to shift tracks belonging to background events
by a larger distance in order to fulfill the constraint, compared to true pK+Λ events.
Hence, these background events result in low p-values. As expected, the biggest
contribution to the background originates from channel 2 (green), which has the
same final state as channel 1 (red). Since the violation of energy and momentum
conservation is only caused by the photon, which is not detected, the deviation from
the constraint is smaller than for other background channels, such as reaction 3
(violet). Therefore, even though the channel 2 events accumulate at low p-values, the
distribution also reaches higher values. In contrast, channel 3 events, which inevitably
contain at least one fake track (due to the undetected neutron), are located at the
very left end of the p-value distribution. The different non-strangeness channels
(reactions 4-10 in table 4.4) and their p-value distributions are shown in the lower
panel of figure 4.12. Due to the respective event topologies, which substantially differ
from reaction 1, the background events are located at p-values around zero.
By defining a significance α, a cut on low p-values rejecting events with p−value < α
reduces the amount of background. In order to estimate the best value for α, the
product of cut purity π and efficiency ε as a function of α is maximized. The two
quantities are defined in the following way [Mün12].

π(α) = Bp−value≤α
Btot

ε(α) = Sp−value>α
Stot

(4.1)

S denotes the number of signal events belonging to channel 1 and B is the num-
ber of background events. For the maximization, only channel 2 is considered as
background, since the other channels have p-values very close to zero. According to
this procedure, the best value for the significance in case of using the energy and
momentum conservation constraint is α = 0.05. The position of the p-value cut
is illustrated by the black lines in figure 4.12. According to this significance, the
p-value cut removes nearly all non-strangeness channel events. Also a large fraction
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No non-vertex Invariant mass Conservation All non-vertex

No vertex - 0.40 0.05 0.03
Intersection p2 & π− 0.60 0.60 0.04 0.03
Secondary vertex 0.30 0.20 0.02 0.007

Table 4.5: Significances for the different constraint combinations, obtained by maxi-
mizing π· ε for pp simulations.

No non-vertex Invariant mass Conservation All non-vertex

No vertex - 2.562 9.686 11.73
Intersection p2 & π− 1.166 2.721 12.28 14.67
Secondary vertex 1.864 3.092 10.83 10.91

Table 4.6: S/B ratios for the different constraint combinations, obtained by maximizing
π· ε for pp simulations. The S/B ratio without p-value cut is 1.319.

of channel 2 is rejected, however, due to the broad distribution a certain amount
of background still remains. The last column of table 4.4 contains the fractions of
events for each single channel, which remain after applying the p-value cut. Only
the background channels 2 (16.9%) and 8 (0.34%) partially remain after the cut.
Since the number of events belonging to reaction 1 is only reduced by 36.7%, the
signal to background ratio, which calculates to S/Bcut = 9.686, is improved by a
factor of 7. This procedure is repeated for all possible combinations of constraint
conditions, which are available for the kinematic refit. The respective quantities
π· ε are maximized, yielding the corresponding values for the best significance α
and the new signal to background ratios. The values for the different constraint
combinations are listed in tables 4.5 and 4.6. The corresponding p-value distributions
for the different background channels are shown in appendix C.
The values listed in the table 4.5 reveal the trend of a decreasing significance for an
increasing number of constraint conditions applied to the simulations. This implies,
that the accumulation of background events at low p-values is stronger for a higher
number of constraints. The reason for this tendency is, that the differences between
true and misidentified pK+Λ events, when modified by the kinematic refit, increase,
if the tracks have to fulfill a larger number of constraint conditions. Moreover, the
distributions shown in appendix C clearly indicate, that the constraints involving
only two particle tracks (invariant mass (p2,π−) and intersection (p2,π−)) are not
able to properly distinct between signal and background events, especially concerning
channel 2. This behavior is expected, since the additional photon, produced in
channel 2, does not affect the invariant mass or the vertex of the p2 and π− tracks.
The best separation between signal and background events in terms of the p-values
is achieved by application of all non-vertex constraints together with the secondary
vertex constraint. The corresponding significance is α = 0.007. However, since the
large number of constraint conditions causes the fit distributions to slightly deviate
from the expected behavior (see section 3.3.2), the p-value and pull distributions are
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(a) (b)

Figure 4.13: Kinematic refit with energy and momentum conservation constraint
applied to pp simulations. (a): The difference of initial and final energy is illustrated for
raw (red) and refitted (blue) events. (b): The plot shows the difference of initial and
final y component of the momentum for raw (red) and refitted (blue) particles. The
distributions after the p-value cut (α = 0.05) are shown in green.

less meaningful with respect to the correct error input and the presence of systematic
errors. Therefore, this constraint combination is not used in the further analysis.
The discussed trend of the significances for different constraint combinations is not
fully reflected by the corresponding S/B ratios (see table 4.6). This originates from
the fact, that maximizing π· ε yields different results than maximizing the S/B or
S2/B ratios.
Returning to the discussion of the kinematic refit with energy and momentum conser-
vation constraint applied to pp simulations, the distributions for the missing energy
and the y component of the missing momentum are illustrated by figure 4.13. The raw
spectra are shown in red, the refitted distributions without and with p-value cut are
represented by the blue and green curves, respectively. The refitted spectra without
p-value cut show clear constraint peaks at zero, however, broad tails are observed

Observable σraw σrefit σrefit,cut ∆σ ∆σrefit

M(p2,π
−) 9.85 MeV/c2 8.64 MeV/c2 8.47 MeV/c2 12.3% 1.97%

MM(p1,K
+) 83.9 MeV/c2 8.64 MeV/c2 8.47 MeV/c2 83.9% 1.97%

Table 4.7: Resolutions of raw and refitted mass spectra, with and without p-value cut
for the kinematic refit with energy and momentum conservation constraint applied to pp
simulations. ∆σ is the difference of raw and refitted mass resolutions. ∆σrefit denotes
the difference of the refitted mass resolutions with and without p-value cut.
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(a) (b)

Figure 4.14: Invariant mass of p2 and π− (a) and missing mass of p1 and K+ (b)
before (red) and after (blue) the kinematic refit with energy and momentum conservation
constraint, applied to pp simulations. The distributions after the p-value cut (α = 0.05)
are shown in green.

even for the refitted events. These tails originate from refitted background events,
which is demonstrated by the green curves, showing the corresponding spectra after
applying the p-value cut, where the tails are suppressed. The rejection of background
events due to the cut almost completely removes the tails. However, since the cut
also reduces the signal events, the constraint peaks slightly shrink in their magnitude.
Figure 4.14 shows the the invariant mass (p2,π−) and missing mass (p1,K+) dis-
tributions for the fit. The values for the respective resolutions are listed in table
4.7. Again, the unconstrained spectra are shown in red, the refitted distributions
without and with p-value cut are illustrated by the blue and green curves, respectively.
Clearly, the p-value cut removes the broad tails of the refitted mass distributions.
This leads, besides the enhancement caused by the kinematic refit itself, to a further
improvement of the mass resolutions.

4.3 Application of the kinematic refit to experimental data
The following section describes the application of the kinematic refit with energy and
momentum conservation constraint to the experimental data. Altogether 72 · 106

events are analyzed, accepting all possible trigger combinations.
Analog to the previous section, the errors for the refit are estimated via the pull
distributions of the fit. The values are listed in table 4.8. In case of analyzed data,
a large amount of background is present. In order to reduce the number of refitted
background events, a cut on the invariant mass (p2,π−) around the nominal Λ mass
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Particle σ(1/p) σ(θ) σ(ϕ) σ(x) σ(y) σ(z)

CDC
p 31 % 4.01◦ 29.8◦ 0.60 cm 0.60 cm 1.6 cm

K+ 40 % 18.3◦ 5.16◦ 0.52 cm 0.52 cm 1.8 cm

π− 52 % 13.8◦ 29.2◦ 0.50 cm 0.50 cm 1.6 cm

HELITRON
p 29 % 1.78◦ 0.0688◦ 0.30 cm 0.30 cm 0.20 cm

π− 56 % 5.10◦ 0.0745◦ 0.30 cm 0.30 cm 0.20 cm

Table 4.8: Errors for the kinematic refit applied to experimental data extracted from
pull distributions. A possible explanation for the large uncertainties of the 1/p parameters
are systematic errors, which can be observed in the pull distributions (Figure 4.15)

is performed. The kinematic refit is applied to events, where the invariant mass
(p2,π−) is smaller than 1.146 GeV/c2 for CDC and smaller than 1.185 GeV/c2 for
HELITRON tracks. The lower cut boundary is defined by the pπ− threshold of
1.078 GeV/c2. Due to the different resolutions, the cut is performed for the two
detectors separately.
Figure 4.15 shows the pull distributions for the momentum parameters of p1 in the
CDC (upper row) and of π− in the HELITRON (lower row). The non-Gaussian
shapes and distinct peaks are a consequence of the refitted background. Besides their
peculiar shapes, the spectra show clear indications for the presence of systematic
errors in θ and 1/p, which manifest themselves in shifts of the distributions along the
x-axis. These shifts are stronger for the CDC tracks, nevertheless also the HELITRON
distributions show systematic errors.
The implications of these systematic errors can be observed in the refitted mass
distributions. Figure 4.16a shows the invariant mass (p2,π−) distribution for raw (red)
and refitted (blue) events. Additionally, the green spectrum illustrates the refitted
events after a p-value cut corresponding to a significance of α = 0.84 is applied. The
estimation of α is discussed at the end of this section. The raw spectrum shows a
clear Λ peak on top of a broad background distribution. After the kinematic refit, the
blue spectrum is obtained, where the structure of the Λ peak emerges more clearly
from the background. The two edges on the right side of the peak originate from the
invariant mass cut for the refit around the Λ mass. However, the refitted Λ peak has

Observable σraw σrefit σrefit,cut ∆σ ∆σrefit

M(p2,π
−) 10.0 MeV/c2 12.7 MeV/c2 10.3 MeV/c2 -21.3% 18.9%

MM(p1,K
+) n.a. 18.2 MeV/c2 8.78 MeV/c2 n.a. 51.8%

Table 4.9: Resolutions of raw and refitted mass spectra, with and without p-value cut
for the kinematic refit with energy and momentum conservation constraint applied to
experimental data. ∆σ is the difference of raw and refitted mass resolutions. ∆σrefit
denotes the difference of the refitted mass resolutions with and without p-value cut.
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Figure 4.15: Kinematic refit with energy and momentum conservation constraint
applied to experimental data. The upper row shows the pull distributions for the
momentum parameters of p1 in the CDC. The lower row shows the pull distributions for
the momentum parameters of pions in the HELITRON. The black curves indicate the
fitted Gauss functions.

a larger width than the unrefitted peak (see table 4.9), which might be caused by the
systematic errors. As discussed in section 4.2.1, the Gauss-Markov theorem is not
valid in the presence of systematic errors. Therefore, the kinematic refit does not
necessarily calculate the best set of parameters, which could cause the decreasing
of the mass resolution. Finally, the green spectrum is obtained by applying a cut
on low p-values with a significance of α = 0.84 to the refitted events. The p-value
cut improves the mass resolution of the refitted spectrum, yielding the original value
of the unrefitted Λ peak. Hence, altogether the invariant mass resolution is not
improved by the kinematic refit. However, the green distribution shows only a very
small fraction of background beneath the Λ peak. Obviously, the p-value cut enables
an effective reduction of background events.
The same effect is observed in the missing mass (p1,K+) spectrum (Figure 4.16b).
The raw spectrum (red) does not show any clear peak signature of the Λ, due to the
reduced resolution in the measurement of the involved particles. After applying the
kinematic refit, the blue curve is obtained, which shows a clear Λ peak on top of a
broad background distribution. Performing a cut on low p-values results in the green
spectrum, which is almost background free and has an improved mass resolution by
51.8%.
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(a) (b)

Figure 4.16: Kinematic refit with energy and momentum conservation constraint
applied to experimental data. Invariant mass (p2,π−) (a) and missing mass (p1,K+)
(b) distribution for raw (red) and refitted (blue) events. The green spectrum shows the
refitted distribution after the application of the p-value cut (α = 0.84).

These spectra show, that the kinematic refit with energy and momentum conservation
constraint does not lead to an improvement of the mass resolutions, which is probably
caused by the systematic errors. Nevertheless, an effective background reduction is
achieved by applying a p-value cut on the refitted events. Therefore, the kinematic
refit can be used as a cut procedure for background reduction, where the unconstrained
track parameters are used for the further analysis instead of the refitted parameters.
In order to systematically study the background reduction for different values of the
significance α, the kinematic refit with energy and momentum conservation constraint
is applied to all events. For different values of α, the signal times signal to background
ratio is calculated, since this quantity is, additionally to the signal to background
ratio, sensitive to the number of signal events. For the calculation of the S2/B, which
is defined within 3σ around the maximum of the Λ peak, a polynomial function
is fitted to the background distribution, together with a Gauss function fit to the
signal. Figure 4.17a illustrates the S2/B as a function of α. The S2/B increases with
increasing significance and shows a maximum at α = 0.84. For larger α, the S2/B
decreases, since in this region, the cut starts to reduce a large amount of signal.
The corresponding p-value distribution is shown in figure 4.17b, where the gray
area denotes the events, which are rejected due to the p-value cut with α = 0.84.
The spectrum shows a large peak at zero, originating from the background events.
Additionally, a peak at large p-values is observed. The rather large value for the
optimized significance of α = 0.84 indicates, that the true pK+Λ events are located at
large p-values and can be associated with the peak at the right end of the spectrum.
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(a) (b)

Figure 4.17: Kinematic refit with energy and momentum conservation constraint
applied to experimental data. (a): S2/B as a function of the significance α. The gray
line indicates the maximum value of α = 0.84. (b): P-value distribution of the fit. The
gray area denotes the events, which are rejected by the p-value cut with a corresponding
significance of α = 0.84.

An explanation for this effect could again be the systematic errors, which are certainly
present in the analysis.
The upper panel of figure 4.18a shows the invariant mass (p2,π−) spectrum for
unrefitted tracks. The polynomial function, which is fitted to the background, is
indicated by the red curve. The lower panel illustrates the background subtracted
invariant mass distribution, showing a Gaussian shaped Λ signal. Figure 4.18b shows
the same distributions after a p-value cut with α = 0.84 is performed, after the
kinematic refit with energy and momentum conservation constraint is applied to all
events. Table 4.10 collects the corresponding values. The refit is exclusively used to
calculate a p-value for each event, which is compared to α. The new parameters ~α are
reseted to the unconstrained values after the fit. Clearly, the p-value cut effectively
reduces a large amount of background, whereas the resolution of the signal remains
unchanged (see table 4.10). As a result of the p-value cut, the S/B is improved by

Cut on α Mass σ Nr. of signal
events

S/B S2/B

no 1.115 GeV/c2 7.2 MeV/c2 854 0.445 380.1
yes 1.115 GeV/c2 7.2 MeV/c2 507 2.57 1305

Table 4.10: Properties of the unrefitted invariant mass (p2,π−) spectra with and
without p-value cut (α = 0.84).
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(a) (b)

Figure 4.18: Kinematic refit with energy and momentum conservation constraint
applied to experimental data. The upper panels show the unrefitted invariant mass
(p2,π−) distributions without (a) and with (b) p-value cut corresponding to a significance
of α = 0.84. The red curves indicate the polynomial fits to the background. The lower
panels show the respective background subtracted distributions. The Gauss fits to the
signals are denoted by the black curves.

a factor of 5.8 and an enhancement factor of 3.4 is achieved for the S2/B. This
illustrates that even in the presence of systematic errors, the kinematic refit is an
important tool for the exclusive analysis of the experimental data, as it allows for an
effective reduction of background.



5 Analysis of the elastic pp channel
This chapter describes the analysis of the elastic reaction pp→ pp at a beam energy
of 3.1 GeV, which is performed in parallel to the exclusive analysis of the reaction
pp→ pK+Λ. The goal of this analysis is the quantification of the CDC-RPC matching
efficiency and the relative HELITRON efficiency. Besides the characterization of
these detector properties, the elastics channel is used to investigate the characteristics
of the kinematic refit and to test the correct alignment of the beam.

5.1 Motivation
The pp elastics channel is a frequently used tool to study various detector properties,
such as the alignment, tracking capability and matching efficiency between different
sub-detectors [Sch08; Spa05]. These characteristics can only be studied, if the event
topology and kinematics is well-understood. Especially for the investigation of the
detector efficiencies, it is essential to reduce the number of fake-tracks to a minimum.
These tracks can appear, if e.g. hitpoints from different reactions are combined into
one track, which obviously does not correspond to any real process. It is evident,
that the fake-tracks are confined to the single sub-detectors. Consequently, in most
of the cases, they cannot be matched with other detectors, reducing the relative
number of matched tracks and hence diminishing the matching efficiency. Of course,
if the kinematics of the processes is known, the fake-tracks can be rejected by the
application of cuts on different kinematics properties. Since the elastic reaction has
the most fundamental kinematics, it is perfectly suited for this characterization.

5.2 Kinematics of elastic reactions
The kinematics of two-body collisions, like the pp elastic reaction, is fixed. Figure 5.1a
shows the elastic scattering process of a beam and a target proton with momenta ~pb
and ~pt in the center of mass (CMS) reference frame. Due to momentum conservation,
the outgoing protons are emitted back-to-back, with momenta ~p1 and ~p2. This defines
the following relation for the azimuthal angles.

∆ϕ = |ϕ1 − ϕ2| = 180◦ (5.1)

Since the two protons are indistinguishable after the reaction, they cannot be uniquely
associated to the beam or target particle, respectively.
Figure 5.1b illustrates the same scattering process in the laboratory (LAB) reference
frame. Via a Lorentz transformation, the momenta of the protons are boosted in
forward direction, obtaining an opening angle θop = θ1 + θ2, where θ1 and θ2 are the

87



88 5 Analysis of the elastic pp channel

(a) (b)

Figure 5.1: (a) Kinematics of elastic scattering processes in the CMS frame (b) and in
the LAB frame.

polar angles of the protons. Also in the LAB system, the two outgoing protons lay
on the same reaction plane (equation 5.1).
After the Lorentz transformation, the total energy and momentum still have to be
conserved, yielding the following relation between the two polar angles1.

tanθ1 · tanθ2 = 1
γ2
CMS

(5.2)

where γCMS = 1√
1−β2

CMS

is the Lorentz factor of the CMS frame with a corresponding
velocity of βCMS . Given the kinetic beam energy Ekin and the rest mass of the
protons mp = 938.27 GeV/c2, the velocity of the CMS system can be calculated with
the following formula.

βCMS =
√
Ekin + 2Ekinmp

Ekin + 2mp
(5.3)

The kinematical values for the underlying pp experiment are collected in table 5.1.
Equation 5.2 implies, that the broadening of the opening angle between the two
protons depends on the one hand on the kinetic energy of the beam projectile. On
the other hand, it depends on the values of the single polar angles. The minimum
value θop,min = 63◦ is obtained when the two protons have the same polar angle
θ1 = θ2 = 31.5◦2. In the limit of θi = 0◦, the maximum opening angle θop,max = 90◦
is achieved. However, since the HELITRON is not capable of detecting particles with

1 In the non-relativistic limit γCMS → 1, equation 5.2 signifies that the opening angle between the
elastic scattered particles is always 90◦.

2 This value is obtained by minimizing the function θop = θ + atan
(

1
γ2tanθ

)
with respect to θ,

where θ ∈ [0,π/2].
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Ekin pbeam βCMS γCMS θop M(p1,p2)

3.10 GeV 3.93 GeV/c 0.79 c 1.63 [63◦,83◦] 3.06 GeV/c2

Table 5.1: Summary of the kinematical properties of the analyzed elastic pp → pp
reaction.

polar angles smaller than θ = 4.5◦, the maximum opening angle of the elastic protons
at this energy is θop,max = 83◦.
According to equation 5.2, the polar angle of an elastic proton can be predicted if the
angle of the other proton track is measured. This allows to define tight cuts based
on the elastics kinematics, enabling an effective selection of elastics events. These
cuts will be used in the following analysis to reduce the amount of fake tracks for the
calculation of the detector efficiencies.
Momentum conservation in the LAB system implies the following equations for the
transverse and longitudinal momentum components pt and pl.

pt,1 − pt,2 = p1sinθ1 − p2sinθ2 = 0 (5.4)

pl,1 + pl,2 = p1cosθ1 + p2cosθ2 = pbeam (5.5)

Together with equation 5.2, another relation can be derived, which correlates the
momentum of an elastic proton with its polar angle.

pi = pbeam
cosθi + γ2

CMSsinθitanθi
(5.6)

Subject to this formula, by measuring the polar angle of an elastic proton, its
momentum can be estimated and compared to the value reconstructed by the tracking
algorithms. This allows for a quantification of the tracking system’s momentum
resolution.
More detailed calculations concerning elastic reactions can be found in [Spa05] and
[Rus06].

5.3 Identification of elastics
The first step in the analysis of the reaction p+ p→ p+ p is the identification and
separation of the protons. Only events containing two protons are accepted and the
particle ID is selected, using the graphical cuts introduced in section 4.1. These
2-proton events yield the desired elastics as well as background events, which have to
be removed. For this purpose, a set of cuts is defined, based on the kinematics of
elastic reactions, which was introduced in the previous section.
In the underlying analysis, the convention is chosen, that the proton with subscript 2
is always measured by the CDC. Since the opening angle is always larger than 63◦
(see table 5.1) at least one of the protons generally falls within the CDC acceptance
(27◦ < θ < 113◦). In 90 % of the cases, the proton p1 is measured by the HELITRON,
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(a) (b)

Figure 5.2: Cuts on the angular relations for elastic events. The blue areas indicate the
allowed angles. (a): Cut on the difference of the azimuthal angles ∆ϕ. (b): Cut on the
difference ∆θ of measured and predicted polar angle of the proton p2. In combination
with the cut on ∆ϕ, two valid angular regions are remaining. The unphysical angle
(empty blue area beneath the beam axis) violates momentum conservation and can be
rejected.

whereas the other elastics particle p2 is detected by the CDC. Only around 10 % of
the events have both protons emitted in the CDC acceptance.
The first selection is based on equation 5.1, performing a cut on the difference of the
azimuthal angles ∆ϕ (Figure 5.2a).

∆ϕ = |ϕ1 − ϕ2| (5.7)

Corresponding to relation 5.2, the polar angle of one elastic proton is determined by
the other particle. This allows to define a cut on the difference of the predicted and
the measured polar angle ∆θ, which is depicted by figure 5.2b. The cut is applied to
the second proton.

∆θ = θ2 − atan
( 1
γ2tanθ1

)
(5.8)

The polar angle cut principally constitutes a spherical segment of validity around
the beam axis, which reduces to two allowed θ-regions in combination with the cut
on ∆ϕ. The wrong polar angle is unphysical because it violates conservation of the
transversal momentum components (equation 5.4) and can therefore be rejected.
The third cut is performed on the invariant mass of the two protons, which depends
on the beam energy. The different cut values are listed in table 5.2.
The effect of applying these cuts to the pp data is demonstrated by figure 5.3. For
the spectra in the following subsections, the whole statistics with all possible trigger
combinations (see section 2.6) is analyzed (≈ 72 · 106 events). Picture (a) shows
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Cut on Lower bound Upper bound

M(p1,p2) 2.50 GeV/c2 3.50 GeV/c2

∆ϕ 176◦ 186◦

∆θ −8◦ 5◦

p-value 0.05 1

Table 5.2: Cut boundaries for the selection of elastic pp events.

a two-dimensional histogram of all events containing 2 protons, where the the two
polar angles θ1 and θ2 are plotted against each other. The black lines indicate the
different detector acceptances in θ (see chapter 2).

• HELITRON: 4.5◦ < θ < 27◦

• CDC - RPC: 27◦ < θ < 50◦

• CDC - Plastic Barrel: θ > 50◦

In the elastics analysis, the HELITRON tracks are always matched with the SiΛVio
detector.
Since no cuts are applied (besides the cut on the proton mass), a large amount of
background is present, especially at small polar angles, and no clear elastic structure
is visible. Panel (c) of figure 5.3 shows the corresponding distribution of ∆θ. The
large peak at negative values corresponds to the yield enhancement in the lower left
corner of picture (a), where both tracks lie in the HELITRON acceptance. However,
even a small bump at zero is visible, originating from elastic events.
Figure 5.3b presents the θ2 vs. θ1 distribution, where the cuts on ∆ϕ and M(p1,p2)
were applied. A large fraction of background can be removed this way, revealing a
clear elastic structure which nicely follows the theoretical curve indicated by the black
dashed line. For the calculation of the CDC-RPC matching efficiency, the second
proton should cross the RPC (following the index convention of this analysis). The
respective area in picture (b) is denoted by the bold black frame. Due to the large
opening angle of the elastic particles, most of the CDC protons have polar angles
larger than 50◦, which is evidenced by the peak structure at large θ2. Hence, only a
certain fraction of the total number of elastics can be used for the determination of
the CDC-RPC matching efficiency.
Even after applying the ∆ϕ andM(p1,p2) cuts, some background is remaining. It can
be further reduced by the cut on ∆θ, indicated by the two red lines. They correspond
to the red area below spectrum 5.3d, which results from the left hand picture (c)
after using the cuts on ∆ϕ and M(p1,p2). A distinct and symmetric elastic peak
centered around zero is visible.
Finally, the kinematic refit with energy and momentum conservation constraint (see
section 3.3) is applied to the selected events, which are located inside the ∆θ cut.
Since even after the kinematical cuts still some background is left, the kinematic refit
is also applied on these wrongly identified elastics.
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(a) (b)

(c) (d)

Figure 5.3: Background reduction with cuts on elastic events. Panels (a) and (c)
show the raw spectra, while the distributions shown in panels (b) and (d) are obtained
by cutting on ∆ϕ and M(p1,p2). The black lines in panels (a) and (b) represent the
different detector acceptances. The location of elastic protons, which can be used for the
estimation of the CDC-RPC matching efficiency, is indicated by the black box in figure
(b). The red lines in (b) and the red shaded area in (d) signify the cut on ∆θ. Finally,
the kinematic refit is applied to the remaining, falling within the red lines in (b). A cut
on the p-value of the fit further reduces background.
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(a) (b)

(c) (d)

Figure 5.4: Background reduction with cuts on elastic events. Panels (a) and (c)
show the raw spectra, while the distributions shown in panels (b) and (d) are obtained
by cutting on ∆θ and M(p1,p2). The red lines in (b) and the red shaded area in (d)
denote the cut on ∆ϕ. The events within the ∆ϕ cut boundaries are finally refitted.
Consequently, a cut on the p-value is applied.

This results in a peak at low values in the corresponding p-value distribution (see
section 5.5). Cutting on the p-value by defining a significance of 0.05 leads to a
further reduction of misidentified events, which can be seen by the sharp edge in the
background at the red cut boundaries in figure 5.3b. The resulting elastic structure
is broader for combinations containing one proton in the HELITRON, due to the
smaller momentum resolution. However, the kinematic refit is used for cutting on
the p-value only. In the further analysis, the unrefitted parameters are used.
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The analog spectra for the azimuthal angles are shown in figure 5.4. Again, the
pictures in panels (a) and (c) show the distributions obtained without applying any
cuts, whereas the spectra in panels (b) and (d) are obtained after applying the cuts
on ∆θ and M(p1,p2). Picture 5.4b shows two diagonals corresponding to elastic
events, which are clearly visible and almost background free. The final cut on ∆ϕ is
indicated by the red lines. After refitting the remaining events with the energy and
momentum conservation constraint, a cut on low p-values is applied. The lower row
shows the distributions of the cut variable ∆ϕ, left (c) without and right (d) with
cuts. Again, the red shaded area corresponds to the ∆ϕ cut boundaries in panel (b).
Figure 5.4a reveals some interesting structures which are worthwhile to be discussed
briefly. First, even without cuts, the two diagonals corresponding to elastic events
are clearly visible. Moreover, a rectangular sub-pattern seems to be superimposed
on the plot. This regular structure reflects the boundaries of the 24 radial sectors of
the HELITRON drift chamber (see section 2.1.2). Furthermore, a clear asymmetry
between the upper left and the lower right triangular region is recognizable. This
effect originates from the fact, that the Λ Trigger SiΛVio was slightly misaligned in
the vertical direction and was hanging downwards with respect to the beam axis. This
small misalignment during the experiment lead to an increased fraction of particles
flying through the upper hemisphere of the second silicon layer SiΛVio-B, causing a
bias in the Λ trigger (see section 2.5). Since in the underlying elastics analysis, the
hits occurring on SiΛVio-B are matched with the HELITRON hits, the asymmetry
propagates to the HELITRON tracks. Last, the poorly populated strips at ϕi ≈ 330◦
stem from an acceptance hole in the HELITRON, caused by two sectors, that were
defect during the experiment.

5.4 Characterization of the drift chambers
The elastic events, that were selected via the cuts introduced in the previous section,
contain only a small fraction of background and fake-tracks. Therefore, they are
well-suited for the characterization of different detector properties.

5.4.1 CDC-RPC matching efficiency
In order to analyze the experimental data, the information of the different sub-
detectors has to be combined. For the ppK− analysis, especially the matching
between CDC and RPC tracks is important, since the produced kaons can only be
identified via the TOF measurement in the RPC. In order to be able to compare
the experimental data to simulations, the CDC-RPC matching efficiency has to be
known. It is defined as the number of CDC tracks which could be matched with the
RPC and therefore are associated to a RPC mass3, divided by the total number of

3 i.e. the mass is determined by the combination of velocity and momentum in contrast to the
CDC mass which is calculated via the energy loss in the drift chamber (see section 2.7).
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CDC tracks. This number generally depends on the momentum and polar angle of
the particles, whereas it should be independent of ϕ.
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Figure 5.5: CDC-RPC matching efficiency as a function of the momentum p and the
polar angle θ (upper picture) and as a function of θ and ϕ (lower picture).
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The upper panel in figure 5.5 shows the CDC-RPC matching efficiency as a function
of the momentum p and the polar angle θ of the elastic particle p2. The course of the
distribution follows the p(θ) relation given by equation 5.6. The matching efficiency
roughly varies between 40 % and 70 %, tending to lower values for larger polar angles
and smaller momenta. The CDC-RPC matching efficiency as a function of θ and
ϕ is illustrated in the lower panel of figure 5.5 and shows three acceptance holes in
ϕ. The left hole at ϕ = 150◦ originates from the broken HELITRON sectors. It
corresponds to the poorly populated strips at ϕ = 330◦ in picture 5.4. Since the
two elastic protons always have a difference in ϕ of 180◦, the acceptance hole in the
HELITRON propagates to the CDC: 150◦ = 300◦ - 180◦. The two holes at ϕ = 200◦
and ϕ = 350◦ result from two acceptance holes in the RPC. Again, the matching
efficiency varies between 40 % and 70 %. Since various corrections (e.g. electric field
distortions) are not yet included in the underlying RPC calibration, the CDC-RPC
matching efficiency is expected to increase if further iterations of the calibrations are
employed.

5.4.2 Relative HELITRON efficiency
The selected elastic events can be used to study different detector properties in
comparison with simulations, since both, data and simulation refer to the same
reaction.
In about 90 % of the cases, the elastic proton p1 is measured by the HELITRON. By
comparing the distribution of all p1 as a function of the momentum p and the angles
θ and ϕ in the data to the same distribution resulting from full scale simulations,
the relative HELITRON efficiency is determined (Figure 5.6). It is calculated for
each bin as the number of p1 hits in the data divided by the number of entries in
the simulation. Both values are normalized to the number of LVL1 trigger events
respectively in order to render the distributions comparable. For the simulation of
the pp reaction, the UrQMD transport model is used, including the most common
reaction channels [UrQ].
In figure 5.6, also tracks are included, which are not matched with the SiΛVio detector
in order to increase the available statistics. In the lower panel, the ϕ angle is divided
into 24 bins, adjusted to the 24 sectors of the HELITRON. The empty strip at ϕ =
330◦ belongs to the acceptance hole caused by the broken sectors, which also appears
in figures 5.4a and 5.5. The second acceptance hole at ϕ = 170◦ results from the
RPC.
The pictures can be used as efficiency matrices for the later analysis in order to scale
down the simulated distributions to fit the experimental ones. This will be essential
for a systematic investigation of the different reaction channels contained in the data.
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Figure 5.6: Relative HELITRON efficiency normalized to LVL1 trigger events as a
function of the momentum p and θ (upper picture) and as a function of θ and ϕ (lower
picture). Two acceptance holes are visible in the θ vs. ϕ picture, at ϕ = 170◦ originating
from the RPC and at ϕ = 330◦, resulting from the broken HELITRON sectors. The
empty area in the upper right corner of the upper panel originates from the kinematics.
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5.5 Application of the kinematic refit
The application of the kinematic refit to the elastic events provides a useful tool
to reduce the background, which cannot be removed with the cuts on the elastic
kinematics. Due to the nature of the kinematics, the possible constraint conditions
that can be used with the refit are limited to the energy and momentum conservation
constraint (which in this case equals the constraint to set the invariant mass M(p1,p2)
to 3.06 GeV/c2) and the intersection constraint. However, the latter is not used, since
its effect is negligible.
Figure 5.7 shows the missing energy and the y-component of the missing momentum for
raw (red) and refitted (blue) elastic events. The used errors, which are estimated with
the help of the pull distributions, are listed in table 5.3. The energy and momentum
conservation constraint is clearly fulfilled after the kinematic refit. Moreover, the
refit exactly shifts all distributions (e.g. p vs. θ, θ2 vs. θ1, etc.) onto the theoretical
curves, following the equations, explained in section 5.2.
The corresponding χ2 and p-value distributions are illustrated in figure 5.8. The
presence of background reflects in the deviation of the χ2 distribution from the
theoretical curve. The fitted ndf value is 4.32, compared to the true value of 4. This
deviation appears as a peak at low p-values in figure 5.8b. By defining a significance
of α = 0.05, all p-values, which are located within the gray shaded area, are rejected.
As shown in section 5.3, this leads to a considerable reduction of background. The
respective pull distributions (Figure 5.9) show a clear deviation from the Gaussian
shape for the 1/p and ϕ parameters. Besides the obvious effect of the refitted
background, the translation of the pull spectra indicate the presence of systematic
errors.
According to equation 5.6, the theoretical momentum ptheo can be predicted by the
measurement of the polar angle θ. By comparing the theoretical to the measured
momentum pexp, this enables the determination of the momentum resolution for
the different drift chambers. The red curves in figure 5.10 represent the momentum
resolutions prawtheo−prawexp for the HELITRON (a) and the CDC (b) for unrefitted events.
Due to the higher momentum reconstruction capability, the resolution of the CDC
is much better. Again, the shift of the momentum resolution to higher values for

Proton in σ(1/p) σ(θ) σ(ϕ)

UrQMD pp simulations
CDC 8.0 % 2.29◦ 0.57◦

HELITRON 18 % 5.73◦ 6.88◦

experimental data
CDC 7.0 % 2.86◦ 2.30◦

HELITRON 18 % 0.86◦ 0.06◦

Table 5.3: Errors for the kinematic refit applied to measured and simulated elastic
proton reactions pp→ pp.
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(a) (b)

Figure 5.7: (a): Energy conservation for raw (red) and refitted (blue) events. (b):
Momentum conservation in y-direction before (red) and after (blue) the application of
the kinematic refit with energy and momentum conservation constraint.

(a) (b)

Figure 5.8: χ2 distribution with ndf = 4 (a) and p-value distribution (b) of the
kinematic refit with energy and momentum conservation constraint. The Grey area
beneath the p-value distribution indicates the significance of α = 0.05 which is used as a
cut on low p-values. The black line in (a) indicates the fitted χ2 curve to the spectrum.
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Figure 5.9: Kinematic refit with energy and momentum conservation constraint. Shown
are the pull distributions for the 3 momentum parameters of the elastic proton p2 in the
CDC. The black lines represent the fitted Gauss functions corresponding to the values in
the upper left corners. The tails of the pull distribution in the first panel originate from
refitted background.

the CDC is a hint for possible systematic errors, which could in a further step be
estimated with the kinematic refit via the pull distributions. After the kinematic
refit with energy and momentum conservation constraint, the respective resolutions
are sharp peaks at zero. Since the particles afterwards exactly satisfy relation 5.6,
the refitted resolutions prefittheo − prefitexp are not meaningful. Instead, the blue curves in
Figure 5.10 show the difference of the theoretical momentum predicted by the raw
polar angle θ and the refitted measured momentum prawtheo − prefitexp . The values for the
different resolutions are listed in table 5.4. For the HELITRON (panel (a), figure
5.10), the resolution drastically enhances by 96 %. The improvement reflects the fact,
that the kinematic refit shifts the momentum to the value, which is predicted before
the refit. This arises from the more precise measurement of the polar angle compared
to the momentum. In case of the CDC (b), the resolution improves by 12 % and its
mean value is shifted towards zero. Clearly, in the presence of systematic errors, the
kinematic refit fails to further improve the resolution, since it tries to compensate
the systematic errors by a statistical procedure. Nevertheless, a noticeable effect is
visible.

Particle σraw σrefit ∆σ

p1 630 MeV/c 25 MeV/c 96%
p2 108 MeV/c 95 MeV/c 12%

Table 5.4: Resolutions of the raw and refitted differences of theoretical and measured
momenta.
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(a) (b)

Figure 5.10: Theoretical momentum resolution for the HELITRON (a) and the CDC
(b). The red curves represent the difference of predicted and measured raw momenta
prawtheo − prawexp . The blue spectra are obtained by comparing the raw predicted momenta
to the refitted measured ones prawtheo − prefitexp .

5.6 Coplanarity of elastics and beam alignment
According to equation 5.1 the momentum vectors of the two elastic protons lie in one
common plane together with the momentum of the beam proton. The three vectors
are referred to as being coplanar. This relation can be used to check, whether the
direction of the incoming beam was really exactly parallel to the z-axis during the
experiment.
Since the beam particles are not explicitly measured, it is assumed, that their
momentum vector only has a z-component, which is determined by the beam energy:
pz =

√
(Ekin +mp)2 −m2

p. If this hypothesis is true, the vector product ~p1 × ~p2
of the two elastic proton momenta is always orthogonal to the beam momentum.
However, if the real beam is inclined by an angle θb with respect to the z-axis, the
emission plane of the elastic protons is tilted as well. Therefore, the elastics and the
hypothetic beam direction along the z-axis are not coplanar anymore.
This situation is illustrated by figure 5.11. The vector product of the elastic momenta,
which is represented by the blue arrow, is still orthogonal to the real beam momentum
~pb. Though, the angle to the z-axis θco, which is assumed to be the direction of the
beam, is different from 90◦. Hence, by investigating the angle θco as a function of
the azimuthal angle ϕ, a possible inclination of the original beam direction can be
determined and corrected.
Figure 5.12a shows the coplanarity angle θco of the elastics as a function of ϕ for
full scale UrQMD pp simulations. In the lower row, the ϕ range is sub-divided into
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Figure 5.11: Scheme of the coplanarity of elastics and beam momenta. The blue arrow
is the vector product of the two elastics momenta ~p1 × ~p2, which is always orthogonal to
the beam direction. The angle θco = π

2 + θb is a direct measure of the tilt angle of the
beam θb.

12 bins. Each bin is fitted with a Gauss function, the standard deviation of which
is represented by the vertical lines. The mean values of the θco distributions are
scattered around 90◦ with deviations less than 0.05◦. This proves, that incident
beam was indeed parallel to the z-axis during the experiment. A tilt of the beam can
therefore be excluded as a source of systematic errors.
The effect of a non-parallel beam on the spectra is shown in figure 5.12b. For this
test, a x-component pb,x of 10 MeV/c is added manually to the beam momentum.

(a) (b)

Figure 5.12: Coplanarity of elastics and beam momenta for full scale pp simulations.
(a): Distribution of the angle θco as a function of ϕ. (b): Effect of a tilted beam
momentum by θb = 0.15◦. The lower row shows the distributions of the upper pictures,
where the ϕ axis is divided into 12 bins. The vertical red lines represent the widths of
the fitted Gaussian functions of each bin.
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Figure 5.13: Coplanarity of elastics and beam momenta for the experimental data.
The systematic shift of θco indicates systematic errors in the measurement of ~p1 and ~p2.
This requires at least a systematic error in ϕ, in order to affect the coplanarity.

This results in a tilt angle of

θb = atan

(
pb,x
pb,z

)
= atan

(0.01GeV/c
3.93GeV/c

)
= 0.15◦ (5.9)

The course of the θco distribution reflects this tilt by showing a minimum at ϕ =
0◦ and a maximum at ϕ = 180◦, corresponding to the angle obtained in equation
5.9. The positions of the extrema belong to a tilt in positive x direction, since at
ϕ = 180◦ the vector ~p1 × ~p2 points along the x-axis. The tilt angle can directly be
extracted from the maximum deviation of

θco = π

2 + θb (5.10)

The θco distribution for the data is shown in figure 5.13. It follows an almost flat
curve, indicating that no tilt of the beam axis was present during the experiment.
However, a systematic θco shift of 0.4◦-0.6◦ is observed. Confirming the results of
the kinematic refit in the previous section, this signifies the presence of systematic
errors in the measurement of the elastic protons, which also affects the θco angle.
The precondition for this shift in θco is a systematic error in the ϕ angle. Otherwise,
a change in θ or 1/p would not alter the coplanarity of the elastics and the beam.
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As recently as a shift in ϕ rotates the momenta of the protons out of the common
emission plane, also changes in the other parameters affect the error of θco. Hence, a
quantitative estimation of the corresponding systematic errors is difficult. In principle,
the effect of manually imposed systematic errors in θ and ϕ on the coplanarity could
be investigated. However, since the errors of this two parameters are correlated, the
determination of the explicit error values is complicated.
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Conclusions
Within the framework of this thesis, the kinematic refit developed for the exclusive
analysis of the pK+Λ reaction was presented, as well as the underlying mathematical
principles were explained. Before applying the kinematic refit to the experimental
data, it was tested with various simulations in order to systematically investigate
the behavior of the different constraints and the effect of systematic errors and
background.
Finally, the analysis of elastic p+ p reactions was presented, where different detector
efficiencies and the beam alignment were determined. The application of the kine-
matic refit reduced the background and enabled a better separation of elastic events.

The most important steps and results of this work are listed in the following.

• The kinematic refit, which was developed for the exclusive analysis of the
reaction pp → pK+Λ, is constructed in a modular and general way. It in-
cludes the following constraint conditions, which can be applied in all possible
combinations (see section 3.3).
– invariant or missing mass constraint
– energy and momentum conservation constraint
– intersection constraint for 2 or 2x2 particle tracks
– secondary vertex constraint

An arbitrary number of particles and iteration steps can be used, together with
three different track representations.

• In order to validate the correct functioning and to study its basic behavior, the
kinematic refit with the single constraint conditions was applied to PLUTO
simulations of the pK+Λ reaction, where the parameters of the tracks were
manually smeared around the simulated values. It was shown that only the
energy and momentum conservation constraint has an impact on the momentum
and angular resolutions of the different particles. The intersection constraint
did not cause any noticeably improvement of the vertex (p2,π−) resolution.
In contrast, the secondary vertex constraint improved the primary vertex
(p1,K+,Λ) resolution noticeably.

• The pull, χ2 and p-value distributions of the refit are sensitive to the correct
error input and to the presence of systematic errors and background (see section

107
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3.3.3). Hence, the covariance matrix V~α0 could be estimated by adjusting the
pull distributions of the fit.

• The kinematic refit with invariant mass (p2,π−) constraint is sensitive to the
correct combination of p and π− to stem from the Λ decay. This feature was
exploited in a pre-selection process which assigned the correct IDs to the two
protons, that appear in the final state (see section 4.1).

• Applied to full scale pK+Λ simulations, the kinematic refit with energy and
momentum conservation constraint lead to an improvement of the mass resolu-
tions of the reconstructed Λ (see section 4.2.1). The pull distributions indicated
the influence of systematic errors.

• The refit was applied to full scale simulations of the pp reaction in order to study
its effect on background events (see section 4.2.2). Via a cut on low p-values,
the refit reduced a large amount of background, provided that the particular
constraint combination acted on all four charged particles. A systematic analysis
of all constraint combinations was performed, showing that the cut efficiency
increased with an increased number of constraint conditions. This trend was
also followed by the S/B ratios of the single fits.

• Finally, the kinematic refit with energy and momentum conservation constraint
was applied to experimental data (see section 4.3). The pull distributions
showed clear indications for systematic errors in the θ and 1/p parameters.
The refit did not improve the invariant mass (p2,π−) but drastically reduced
the background. It was demonstrated, that the kinematic refit can be used to
efficiently reduce a large amount of background via a cut on the p-value. Since
the refitted tracks did not show an improved mass resolution, the unconstrained
parameters were used for the further analysis. In this case, the kinematic refit
exclusively acted as a cut procedure.

• In the last chapter, the analysis of elastic pp reactions was presented. It was
pointed out, that elastic events are a well-suited tool for the determination of
detector efficiencies. Due to the fixed kinematics, tight cuts efficiently select
elastic events and reduce the amount of fake tracks. The kinematic refit with
energy and momentum conservation constraint was used to further reduce
the background by cutting on the p-value of the fit. Again, indications for
systematic errors were observed in the pull distributions. The CDC-RPC
matching efficiency and the relative HELITRON efficiency as a function of the
momentum and the angles were determined and discussed. Furthermore, the
alignment of the beam was investigated via the coplanarity of elastic and beam
protons. A systematic shift was observed which pointed to the presence of
systematic errors.
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Outlook
The kinematic refit is a powerful tool for the exclusive analysis of the pK+Λ reaction.
For the future analysis, the following steps involving the kinematic refit are planned.

• Different results of this work clearly indicate the presence of systematic errors.
The next step in the exclusive analysis is the localization and quantification of
these uncertainties together with a subsequent correction. The kinematic refit
can be used to localize the systematic errors by manually imposing systematic
shifts on the different parameters. The investigation of the resulting effects
on the pull distributions could help to understand the origin of the observed
uncertainties.
Currently, a re-calibration of the detectors is ongoing. In course of these
corrections, the systematic errors are expected to diminish.

• Analog to the pre-selection procedure presented in section 4.1, the kinematic
refit can be used to select exclusive pK+Λ events without the necessity of
graphical cuts. If the appropriate combination of constraints is used, the refit
is sensitive to the correct event topology. The advantage of such an event
identification method is the possibility to accept also events with more than
4 reconstructed track candidates. In case of an event selection with graphical
cuts (see section 4.1), all exclusive events that occur together with fake tracks
are rejected by the condition of exactly 4 reconstructed particle tracks. The
refit based event selection would keep those events. According to the particular
charges of the different particles, all possible event hypothesis are made, where
the different particles are assigned to the pK+Λ final state particles (e.g. in
the case of one negatively and three positively charged particles, 6 possible
combinations exist). Consequently, the procedure selects the combination which
results in the smallest χ2 value.
Moreover, this procedure would enable an exclusive event selection without the
requirement of a direct K+ identification in the RPC, which would lead to an
increased acceptance for exclusive pK+Λ events [Mün12].

• As explained in section 1.4, N∗ resonances play an important role in the
production mechanisms of the pK+Λ reaction. Since a large fraction of the
analyzed exclusive events belong to the direct pK+Λ production without the
formation of an intermediate ppK−, the signatures of different N∗ resonances
could be discovered in the data. According to figure 1.14, the contribution of
heavier N∗ like N(1710) or N(1720) should be dominant at the FOPI beam
energy of 3.1 GeV. Indeed, the kinematic refit could intensify possible N∗
structures contained in the data. Figure 6.1 shows the missing mass (p1)
distribution for raw (red) and refitted (blue) events. The refitted spectrum
shows a structure, which could emerge from an intermediate N(1900) resonance.
Subsequently, this effect has to be investigated with UrQMD pp simulations,
which also contain reactions with intermediate N∗ resonances.
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Figure 6.1: Missing mass (p1) distribution for raw (red) and refitted (blue) tracks,
where the kinematic refit with energy and momentum conservation constraint is applied
to experimental data. The refitted spectrum shows a structure, which could emerge from
a intermediate N(1900) resonance [Mün12].



A D- and E-matrix elements and constraint
equations

Definitions
Momentum parameters:

~pi =


px,i

py,i

pz,i

 sph= pi


sinθi cosϕi

sinθi sinϕi

cosθi


Emission point parameters:

~xi =


xx,i

xy,i

xz,i

 sph= R~x,i


sinθ~x,i cosϕ~x,i

sinθ~x,i sinϕ~x,i

cosθ~x,i


Λ vertex parameters:

~zΛ =


zΛ,x

zΛ,y

zΛ,z

 sph= R~z


sinθ~z cosϕ~z

sinθ~z sinϕ~z

cosθ~z


Primary vertex parameters:

~zPrim =


zPrim,x

zPrim,y

zPrim,z


Momentum:

pi =
√
p2
x,i + p2

y,i + p2
z,i

sph=
√
p2
i sin

2θicos2ϕi + p2
i sin

2θisin2ϕi + p2
i cos

2θi

Energy:

Ei =
√
~p2
i +M2

i
sph=

√
p2
i sin

2θicos2ϕi + p2
i sin

2θisin2ϕi + p2
i cos

2θi +M2
i
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Invariant mass constraint
In the following expressions, the subscript “i” stands for the particles p2 and π−.

Constraint equation*
H(~α) = 0 = (Ep2 + Eπ−)2 − (~pp2 + ~pπ−)2 −M2

Λ

D-matrix elements in spherical coordinates

∂H(~α)
∂(1/p)i

= −2(Ep2 + Eπ−) p
3
i

Ei
+ 2(px,p2 + px,π−) pipx,i (A.1)

+2(py,p2 + py,π−) pipy,i + 2(pz,p2 + pz,π−) pipz,i (A.2)

∂H(~α)
∂θi

= 2(Ep2 + Eπ−) pi
Ei

(px,icosθicosϕi + py,icosθisinϕi − pz,isinθi)

(A.3)
−2(px,p2 + px,π−) picosθicosϕi − 2(py,p2 + py,π−) picosθisinϕi (A.4)
+2(pz,p2 + pz,π−) pisinθi (A.5)

∂H(~α)
∂ϕi

= 2(px,p2 + px,π−) py,i − 2(py,p2 + py,π−) px,i

D-matrix elements in Cartesian coordinates

∂H(~α)
∂px,i

= 2(Ep2 + Eπ−) px,i
Ei
− 2(px,p2 + px,π−)

∂H(~α)
∂py,i

= 2(Ep2 + Eπ−) py,i
Ei
− 2(py,p2 + py,π−)

∂H(~α)
∂pz,i

= 2(Ep2 + Eπ−) pz,i
Ei
− 2(pz,p2 + pz,π−)
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Missing mass constraint
In the following expressions, the subscript “i” stands for the particles p1 and K+.

Constraint equation*
H(~α) = 0 = (Epb + Ept − Ep1 − EK+)2 − (~ppb + ~ppt − ~pp1 − ~pK+)2 −M2

Λ

D-matrix elements in spherical coordinates

∂H(~α)
∂(1/p)i

= 2(Epb + Ept − Ep1 − EK+) p
3
i

Ei
(A.6)

−2(px,pb + px,pt − px,p1 − px,K+) pipx,i (A.7)
−2(py,pb + py,pt − py,p1 − py,K+) pipy,i (A.8)
−2(pz,pb + pz,pt − pz,p1 − pz,K+) pipz,i (A.9)

∂H(~α)
∂θi

= −2(Epb + Ept − Ep1 − EK+) pi
Ei

(px,icosθicosϕi + py,icosθisinϕi − pz,isinθi)

(A.10)
2(px,pb + px,pt − px,p1 − px,K+) picosθicosϕi (A.11)
2(py,pb + py,pt − py,p1 − py,K+) picosθisinϕi (A.12)
−2(pz,pb + pz,pt − pz,p1 − pz,K+) pisinθi (A.13)

∂H(~α)
∂ϕi

= −2(px,pb + px,pt − px,p1 − px,K+) py,i (A.14)

+2(py,pb + py,pt − py,p1 − py,K+) px,i (A.15)

D-matrix elements in Cartesian coordinates

∂H(~α)
∂px,i

= −2(Epb + Ept − Ep1 − EK+) px,i
Ei

+ 2(px,pb + px,pt − px,p1 − px,K+)

∂H(~α)
∂py,i

= −2(Epb + Ept − Ep1 − EK+) py,i
Ei

+ 2(py,pb + py,pt − py,p1 − py,K+)

∂H(~α)
∂pz,i

= −2(Epb + Ept − Ep1 − EK+) pz,i
Ei

+ 2(pz,pb + pz,pt − pz,p1 − pz,K+)
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Energy and momentum conservation constraint
In the following expressions, the subscript “i” refers to all 4 particles (p1, K+, p2,
π−).

Constraint equation*s

H1(~α) = 0 = Epb + Ept − Ep1 − EK+ − Ep2 − Eπ− (A.16)
H2(~α) = 0 = px,pb + px,pt − px,p1 − px,K+ − px,p2 − px,π− (A.17)
H3(~α) = 0 = py,pb + py,pt − py,p1 − py,K+ − py,p2 − py,π− (A.18)
H4(~α) = 0 = pz,pb + pz,pt − pz,p1 − pz,K+ − pz,p2 − pz,π− (A.19)

D-matrix elements in spherical coordinates

∂H1(~α)
∂(1/p)i

= p3
i

Ei

∂H1(~α)
∂θi

= − pi
Ei

(px,icosθicosϕi + py,icosθisinϕi − pz,isinθi)

∂H1(~α)
∂ϕi

= 0

∂H2(~α)
∂(1/p)i

= p2
i sinθicosϕi = pipx,i

∂H2(~α)
∂θi

= −picosθicosϕi

∂H2(~α)
∂ϕi

= pisinθisinϕi = py,i

∂H3(~α)
∂(1/p)i

= p2
i sinθisinϕi = pipy,i

∂H3(~α)
∂θi

= −picosθisinϕi

∂H3(~α)
∂ϕi

= −pisinθicosϕi = −px,i

∂H4(~α)
∂(1/p)i

= p2
i cosθi = pipz,i
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∂H4(~α)
∂θi

= pisinθi

∂H4(~α)
∂ϕi

= 0

D-matrix elements in Cartesian coordinates

∂H1(~α)
∂px,i

= −px,i
Ei

∂H1(~α)
∂py,i

= −py,i
Ei

∂H1(~α)
∂pz,i

= −pz,i
Ei

∂H2(~α)
∂px,i

= −1 ∂H2(~α)
∂py,i

= 0 ∂H2(~α)
∂pz,i

= 0

∂H3(~α)
∂px,i

= 0 ∂H3(~α)
∂py,i

= −1 ∂H3(~α)
∂pz,i

= 0

∂H4(~α)
∂px,i

= 0 ∂H4(~α)
∂py,i

= 0 ∂H4(~α)
∂pz,i

= −1
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Intersection constraint
In the following expressions, the subscript “i” stands for the particles p2 and π−.

Constraint equation*s

H1(~α,~zΛ) = 0 = xx,p2 − xx,π− + Cp2
dp2

pp2
px,p2 − Cπ−

dπ−

pπ−
px,π− (A.20)

H2(~α,~zΛ) = 0 = xy,p2 − xy,π− + Cp2
dp2

pp2
py,p2 − Cπ−

dπ−

pπ−
py,π− (A.21)

H3(~α,~zΛ) = 0 = xz,p2 − xz,π− + Cp2
dp2

pp2
pz,p2 − Cπ−

dπ−

pπ−
pz,π− (A.22)

with

di = |~zΛ − ~xi| =
√

(zΛ,x − xx,i)2 + (zΛ,y − xy,i)2 + (zΛ,z − xz,i)2 (A.23)

=
[
(R~zsinθ~zcosϕ~z −R~x,isinθ~x,icosϕ~x,i)2 (A.24)

+ (R~zsinθ~zsinϕ~z −R~x,isinθ~x,isinϕ~x,i)2 (A.25)

+ (R~zcosθ~z −R~x,icosθ~x,i)2
]1/2

(A.26)

and

Ci = zΛ,z − xz,i√
(zΛ,z − xz,i)2

=
{

+1 if xz,i < zΛ,z

−1 if xz,i > zΛ,z

D-matrix elements in spherical coordinates
The leading signs of the following D-matrix elements depend on the signs in front
of the respective parameters in the constraint equations (i.e. “±” refers to “+” for
i = p2 and to “−” for i = π−).

∂H1(~α,~zΛ)
∂(1/p)i

= 0

∂H1(~α,~zΛ)
∂θi

= ± Cidicosθi
[
cosϕi −

px,i
p2
i

(px,icosϕi + py,isinϕi − pz,itanθi)
]

∂H1(~α,~zΛ)
∂ϕi

= ∓ Cidi
py,i
pi
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∂H1(~α,~zΛ)
∂R~x,i

=± sinθ~x,icosϕ~x,i ∓ Ci
px,i
pidi

[
(zΛ,x − xx,i)sinθ~x,icosϕ~x,i (A.27)

+ (zΛ,y − xy,i)sinθ~x,isinϕ~x,i + (zΛ,z − xz,i)cosθ~x,i
]

(A.28)

∂H1(~α,~zΛ)
∂θ~x,i

=± R~x,icosθ~x,icosϕ~x,i ∓ Ci
R~x,ipx,i
pidi

[
(zΛ,x − xx,i)cosθ~x,icosϕ~x,i

(A.29)
+ (zΛ,y − xy,i)cosθ~x,isinϕ~x,i − (zΛ,z − xz,i)sinθ~x,i

]
(A.30)

∂H1(~α,~zΛ)
∂ϕ~x,i

= ∓ xy,i ± Ci
px,i
pidi

[(zΛ,x − xx,i)xy,i − (zΛ,y − xy,i)xx,i]

∂H2(~α,~zΛ)
∂(1/p)i

= 0

∂H2(~α,~zΛ)
∂θi

= ± Cidicosθi
[
sinϕi −

py,i
p2
i

(px,icosϕi + py,isinϕi − pz,itanθi)
]

∂H2(~α,~zΛ)
∂ϕi

= ± Cidi
px,i
pi

∂H2(~α,~zΛ)
∂R~x,i

=± sinθ~x,isinϕ~x,i ∓ Ci
py,i
pidi

[
(zΛ,x − xx,i)sinθ~x,icosϕ~x,i (A.31)

+ (zΛ,y − xy,i)sinθ~x,isinϕ~x,i + (zΛ,z − xz,i)cosθ~x,i
]

(A.32)

∂H2(~α,~zΛ)
∂θ~x,i

=± R~x,icosθ~x,isinϕ~x,i ∓ Ci
R~x,ipy,i
pidi

[
(zΛ,x − xx,i)cosθ~x,icosϕ~x,i

(A.33)
+ (zΛ,y − xy,i)cosθ~x,isinϕ~x,i − (zΛ,z − xz,i)sinθ~x,i

]
(A.34)

∂H2(~α,~zΛ)
∂ϕ~x,i

= ± xx,i ± Ci
py,i
pidi

[(zΛ,x − xx,i)xy,i − (zΛ,y − xy,i)xx,i]

∂H3(~α,~zΛ)
∂(1/p)i

= 0

∂H3(~α,~zΛ)
∂θi

= ∓ Cidicosθi
[
tanθi +

pz,i
p2
i

(px,icosϕi + py,isinϕi − pz,itanθi)
]
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∂H3(~α,~zΛ)
∂ϕi

= 0

∂H3(~α,~zΛ)
∂R~x,i

=± cosθ~x,i ∓ Ci
pz,i
pidi

[
(zΛ,x − xx,i)sinθ~x,icosϕ~x,i (A.35)

+ (zΛ,y − xy,i)sinθ~x,isinϕ~x,i + (zΛ,z − xz,i)cosθ~x,i
]

(A.36)

∂H3(~α,~zΛ)
∂θ~x,i

=∓ R~x,isinθ~x,i ∓ Ci
R~x,ipz,i
pidi

[
(zΛ,x − xx,i)cosθ~x,icosϕ~x,i (A.37)

+ (zΛ,y − xy,i)cosθ~x,isinϕ~x,i − (zΛ,z − xz,i)sinθ~x,i
]

(A.38)

∂H3(~α,~zΛ)
∂ϕ~x,i

= ± Ci
pz,i
pidi

[(zΛ,x − xx,i)xy,i − (zΛ,y − xy,i)xx,i]

E-matrix elements in spherical coordinates

∂H1(~α,~zΛ)
∂R~z

= Cp2
px,p2

pp2dp2
[(zΛ,x − xx,p2)sinθ~zcosϕ~z (A.39)

+ (zΛ,y − xy,p2)sinθ~zsinϕ~z + (zΛ,z − xz,p2)cosθ~z] (A.40)

− Cπ−
px,π−

pπ−dπ−

[
(zΛ,x − xx,π−)sinθ~zcosϕ~z (A.41)

+ (zΛ,y − xy,π−)sinθ~zsinϕ~z + (zΛ,z − xz,π−)cosθ~z
]

(A.42)

∂H1(~α,~zΛ)
∂θ~z

= Cp2
R~zpx,p2

pp2dp2
[(zΛ,x − xx,p2)cosθ~zcosϕ~z (A.43)

+ (zΛ,y − xy,p2)cosθ~zsinϕ~z − (zΛ,z − xz,p2)sinθ~z] (A.44)

− Cπ−
R~zpx,π−

pπ−dπ−

[
(zΛ,x − xx,π−)cosθ~zcosϕ~z (A.45)

+ (zΛ,y − xy,π−)cosθ~zsinϕ~z − (zΛ,z − xz,π−)sinθ~z
]

(A.46)

∂H1(~α,~zΛ)
∂ϕ~z

= Cp2
px,p2

pp2dp2
[(zΛ,y − xy,p2)zΛ,x − (zΛ,x − xx,p2)zΛ,y] (A.47)

− Cπ−
px,π−

pπ−dπ−

[
(zΛ,y − xy,π−)zΛ,x − (zΛ,x − xx,π−)zΛ,y

]
(A.48)
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∂H2(~α,~zΛ)
∂R~z

= Cp2
py,p2

pp2dp2
[(zΛ,x − xx,p2)sinθ~zcosϕ~z (A.49)

+ (zΛ,y − xy,p2)sinθ~zsinϕ~z + (zΛ,z − xz,p2)cosθ~z] (A.50)

− Cπ−
py,π−

pπ−dπ−

[
(zΛ,x − xx,π−)sinθ~zcosϕ~z (A.51)

+ (zΛ,y − xy,π−)sinθ~zsinϕ~z + (zΛ,z − xz,π−)cosθ~z
]

(A.52)

∂H2(~α,~zΛ)
∂θ~z

= Cp2
R~zpy,p2

pp2dp2
[(zΛ,x − xx,p2)cosθ~zcosϕ~z (A.53)

+ (zΛ,y − xy,p2)cosθ~zsinϕ~z − (zΛ,z − xz,p2)sinθ~z] (A.54)

− Cπ−
R~zpy,π−

pπ−dπ−

[
(zΛ,x − xx,π−)cosθ~zcosϕ~z (A.55)

+ (zΛ,y − xy,π−)cosθ~zsinϕ~z − (zΛ,z − xz,π−)sinθ~z
]

(A.56)

∂H2(~α,~zΛ)
∂ϕ~z

= Cp2
py,p2

pp2dp2
[(zΛ,y − xy,p2)zΛ,x − (zΛ,x − xx,p2)zΛ,y] (A.57)

− Cπ−
py,π−

pπ−dπ−

[
(zΛ,y − xy,π−)zΛ,x − (zΛ,x − xx,π−)zΛ,y

]
(A.58)

∂H3(~α,~zΛ)
∂R~z

= Cp2
pz,p2

pp2dp2
[(zΛ,x − xx,p2)sinθ~zcosϕ~z (A.59)

+ (zΛ,y − xy,p2)sinθ~zsinϕ~z + (zΛ,z − xz,p2)cosθ~z] (A.60)

− Cπ−
pz,π−

pπ−dπ−

[
(zΛ,x − xx,π−)sinθ~zcosϕ~z (A.61)

+ (zΛ,y − xy,π−)sinθ~zsinϕ~z + (zΛ,z − xz,π−)cosθ~z
]

(A.62)

∂H3(~α,~zΛ)
∂θ~z

= Cp2
R~zpz,p2

pp2dp2
[(zΛ,x − xx,p2)cosθ~zcosϕ~z (A.63)

+ (zΛ,y − xy,p2)cosθ~zsinϕ~z − (zΛ,z − xz,p2)sinθ~z] (A.64)

− Cπ−
R~zpz,π−

pπ−dπ−

[
(zΛ,x − xx,π−)cosθ~zcosϕ~z (A.65)

+ (zΛ,y − xy,π−)cosθ~zsinϕ~z − (zΛ,z − xz,π−)sinθ~z
]

(A.66)

∂H3(~α,~zΛ)
∂ϕ~z

= Cp2
pz,p2

pp2dp2
[(zΛ,y − xy,p2)zΛ,x − (zΛ,x − xx,p2)zΛ,y] (A.67)

− Cπ−
pz,π−

pπ−dπ−

[
(zΛ,y − xy,π−)zΛ,x − (zΛ,x − xx,π−)zΛ,y

]
(A.68)
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D-matrix elements in Cartesian coordinates
The leading signs of the following D-matrix elements depend on the signs in front
of the respective parameters in the constraint equations (i.e. “±” refers to “+” for
i = p2 and to “−” for i = π−).

∂H1(~α,~zΛ)
∂px,i

= ± Ci
di
pi

(
1−

p2
x,i

p2
i

)

∂H1(~α,~zΛ)
∂py,i

= ∓ Cidi
px,ipy,i
p3
i

∂H1(~α,~zΛ)
∂pz,i

= ∓ Cidi
px,ipz,i
p3
i

∂H1(~α,~zΛ)
∂xx,i

= ±
(

1− Ci
px,i
pi

(zΛ,x − xx,i)
di

)
∂H1(~α,~zΛ)
∂xy,i

= ∓ Ci
px,i
pi

(zΛ,y − xy,i)
di

∂H1(~α,~zΛ)
∂xz,i

= ∓ Ci
px,i
pi

(zΛ,z − xz,i)
di

∂H2(~α,~zΛ)
∂px,i

= ∓ Cidi
py,ipx,i
p3
i

∂H2(~α,~zΛ)
∂py,i

= ± Ci
di
pi

(
1−

p2
y,i

p2
i

)
∂H2(~α,~zΛ)
∂pz,i

= ∓ Cidi
py,ipz,i
p3
i

∂H2(~α,~zΛ)
∂xx,i

= ∓ Ci
py,i
pi

(zΛ,x − xx,i)
di

∂H2(~α,~zΛ)
∂xy,i

= ±
(

1− Ci
py,i
pi

(zΛ,y − xy,i)
di

)
∂H2(~α,~zΛ)
∂xz,i

= ∓ Ci
py,i
pi

(zΛ,z − xz,i)
di

∂H3(~α,~zΛ)
∂px,i

= ∓ Cidi
pz,ipx,i
p3
i

∂H3(~α,~zΛ)
∂py,i

= ∓ Cidi
pz,ipy,i
p3
i
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∂H3(~α,~zΛ)
∂pz,i

= ∓ Ci
di
pi

(
1−

p2
z,i

p2
i

)
∂H3(~α,~zΛ)
∂xx,i

= ∓ Ci
pz,i
pi

(zΛ,x − xx,i)
di

∂H3(~α,~zΛ)
∂xy,i

= ∓ Ci
pz,i
pi

(zΛ,y − xy,i)
di

∂H3(~α,~zΛ)
∂xz,i

= ±
(

1− Ci
pz,i
pi

(zΛ,z − xz,i)
di

)

E-matrix elements in Cartesian coordinates

∂H1(~α,~zΛ)
∂zΛ,x

= Cp2
px,p2

pp2

(zΛ,x − xx,p2)
dp2

− Cπ−
px,π−

pπ−

(zΛ,x − xx,π−)
dπ−

∂H1(~α,~zΛ)
∂zΛ,y

= Cp2
px,p2

pp2

(zΛ,y − xy,p2)
dp2

− Cπ−
px,π−

pπ−

(zΛ,y − xy,π−)
dπ−

∂H1(~α,~zΛ)
∂zΛ,z

= Cp2
px,p2

pp2

(zΛ,z − xz,p2)
dp2

− Cπ−
px,π−

pπ−

(zΛ,z − xz,π−)
dπ−

∂H2(~α,~zΛ)
∂zΛ,x

= Cp2
py,p2

pp2

(zΛ,x − xx,p2)
dp2

− Cπ−
py,π−

pπ−

(zΛ,x − xx,π−)
dπ−

∂H2(~α,~zΛ)
∂zΛ,y

= Cp2
py,p2

pp2

(zΛ,y − xy,p2)
dp2

− Cπ−
py,π−

pπ−

(zΛ,y − xy,π−)
dπ−

∂H2(~α,~zΛ)
∂zΛ,z

= Cp2
py,p2

pp2

(zΛ,z − xz,p2)
dp2

− Cπ−
py,π−

pπ−

(zΛ,z − xz,π−)
dπ−

∂H3(~α,~zΛ)
∂zΛ,x

= Cp2
pz,p2

pp2

(zΛ,x − xx,p2)
dp2

− Cπ−
pz,π−

pπ−

(zΛ,x − xx,π−)
dπ−

∂H3(~α,~zΛ)
∂zΛ,y

= Cp2
pz,p2

pp2

(zΛ,y − xy,p2)
dp2

− Cπ−
pz,π−

pπ−

(zΛ,y − xy,π−)
dπ−

∂H3(~α,~zΛ)
∂zΛ,z

= Cp2
pz,p2

pp2

(zΛ,z − xz,p2)
dp2

− Cπ−
pz,π−

pπ−

(zΛ,z − xz,π−)
dπ−
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Secondary vertex constraint
Constraint equation*s
Intersection of p2 and π− in ~zΛ:

H1(~α,~zΛ,~zPrim) = 0 = xx,p2 − xx,π− + Cp2
dp2

pp2
px,p2 − Cπ−

dπ−

pπ−
px,π− (A.69)

H2(~α,~zΛ,~zPrim) = 0 = xy,p2 − xy,π− + Cp2
dp2

pp2
py,p2 − Cπ−

dπ−

pπ−
py,π− (A.70)

H3(~α,~zΛ,~zPrim) = 0 = xz,p2 − xz,π− + Cp2
dp2

pp2
pz,p2 − Cπ−

dπ−

pπ−
pz,π− (A.71)

Intersection of p1 and Λ in ~zPrim:

H4(~α,~zΛ,~zPrim) = 0 = xx,p1 − zΛ,x + Cp1
dp1

pp1
px,p1 − CΛ

dΛ
|~pp2 + ~pπ− |

(px,p2 + px,π−)

(A.72)

H5(~α,~zΛ,~zPrim) = 0 = xy,p1 − zΛ,y + Cp1
dp1

pp1
py,p1 − CΛ

dΛ
|~pp2 + ~pπ− |

(py,p2 + py,π−)

(A.73)

H6(~α,~zΛ,~zPrim) = 0 = xz,p1 − zΛ,z + Cp1
dp1

pp1
pz,p1 − CΛ

dΛ
|~pp2 + ~pπ− |

(pz,p2 + pz,π−)

(A.74)

Intersection of K+ and Λ in ~zPrim:

H7(~α,~zΛ,~zPrim) = 0 = xx,K+ − zΛ,x + CK+
dK+

pK+
px,K+ − CΛ

dΛ
|~pp2 + ~pπ− |

(px,p2 + px,π−)

(A.75)

H8(~α,~zΛ,~zPrim) = 0 = xy,K+ − zΛ,y + CK+
dK+

pK+
py,K+ − CΛ

dΛ
|~pp2 + ~pπ− |

(py,p2 + py,π−)

(A.76)

H9(~α,~zΛ,~zPrim) = 0 = xz,K+ − zΛ,z + CK+
dK+

pK+
pz,K+ − CΛ

dΛ
|~pp2 + ~pπ− |

(pz,p2 + pz,π−)

(A.77)

with

di = |~zΛ − ~xi| =
√

(zΛ,x − xx,i)2 + (zΛ,y − xy,i)2 + (zΛ,z − xz,i)2

and

dΛ = |~zPrim − ~zΛ| =
√

(zPrim,x − zΛ,x)2 + (zPrim,y − zΛ,y)2 + (zprim,z − zΛ,z)2
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The coefficients Ci and CΛ are defined in the following way.

Ci = zPrim,z − xz,i√
(zPrim,z − xz,i)2

=
{

+1 if xz,i < zPrim,z

−1 if xz,i > zPrim,z

CΛ = zΛ,z − zPrim,z√
(zΛ,z − zPrim,z)2

=
{

+1 if zPrim,z < zΛ,z

−1 if zPrim,z > zΛ,z

D-matrix elements in spherical coordinates
The D-matrix elements of the momentum parameters are shown for both coordinate
systems, the derivatives of the emission point parameters are calculated in Cartesian
coordinates only, since in the pp analysis, the mixed track representation ~αmix is
used.
The derivatives of the constraint equations 1-3 with respect to the parameters of
p2 and π− are equivalent to the expressions of the single intersection constraint.
Therefore, they are not explicitly listed again.

Derivatives with respect to p1 and K+

In the following expressions, the subscript “i” stands for the particles p1 and K+.

∂H4,7(~α,~zΛ,~zPrim)
∂(1/p)i

= 0

∂H4,7(~α,~zΛ,~zPrim)
∂θi

= Cidicosθi

[
cosϕi −

px,i
p2
i

(px,icosϕi + py,isinϕi − pz,itanθi)
]

∂H4,7(~α,~zΛ,~zPrim)
∂ϕi

= −Ci
dipy,i
pi

∂H5,8(~α,~zΛ,~zPrim)
∂(1/p)i

= 0

∂H5,8(~α,~zΛ,~zPrim)
∂θi

= Cidicosθi

[
sinϕi −

py,i
p2
i

(px,icosϕi + py,isinϕi − pz,itanθi)
]

∂H5,8(~α,~zΛ,~zPrim)
∂ϕi

= Ci
dipx,i
pi

∂H6,9(~α,~zΛ,~zPrim)
∂(1/p)i

= 0
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∂H6,9(~α,~zΛ,~zPrim)
∂θi

= −Cidicosθi
[
tanθi +

pz,i
p2
i

(px,icosϕi + py,isinϕi − pz,itanθi)
]

∂H6,9(~α,~zΛ,~zPrim)
∂ϕi

= 0

Derivatives with respect to p2 and π−

In the following expressions, the subscript “i” stands for the particles p2 and π−.
The Λ momentum vector is defined as ~pΛ = ~pp2 + ~pπ− .

∂H4,7(~α,~zΛ,~zPrim)
∂(1/p)i

= 0

∂H4,7(~α,~zΛ,~zPrim)
∂θi

=− CΛ
dΛ
pΛ
picosθi

[
cosϕi (A.78)

− pΛ,x
p2
Λ

(pΛ,xcosϕi + pΛ,ysinϕi − pΛ,ztanθi)
]

(A.79)

∂H4,7(~α,~zΛ,~zPrim)
∂ϕi

= CΛ
dΛ
pΛ
py,i

[
1 + pΛ,x

p2
Λ

(pΛ,yartanϕi − pΛ,x)
]

∂H5,8(~α,~zΛ,~zPrim)
∂(1/p)i

= 0

∂H5,8(~α,~zΛ,~zPrim)
∂θi

=− CΛ
dΛ
pΛ
picosθi

[
sinϕi (A.80)

− pΛ,y
p2
Λ

(pΛ,xcosϕi + pΛ,ysinϕi − pΛ,ztanθi)
]

(A.81)

∂H5,8(~α,~zΛ,~zPrim)
∂ϕi

= CΛ
dΛ
pΛ
px,i

[
1 + pΛ,y

p2
Λ

(pΛ,y − pΛ,xtanϕi)
]

∂H6,9(~α,~zΛ,~zPrim)
∂(1/p)i

= 0

∂H6,9(~α,~zΛ,~zPrim)
∂θi

= CΛ
dΛ
pΛ
picosθi

[
tanθi (A.82)

+ pΛ,z
p2
Λ

(pΛ,xcosϕi + pΛ,ysinϕi − pΛ,ztanθi)
]

(A.83)
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∂H6,9(~α,~zΛ,~zPrim)
∂ϕi

= CΛ
dΛ
p3
Λ

pz,i(pΛ,ypx,i − pΛ,xpy,i)

D-matrix elements in Cartesian coordinates
Derivatives with respect to p1 and K+

In the following expressions, the subscript “i” stands for the particles p1 and K+.

∂H4,7(~α,~zΛ,~zPrim)
∂px,i

= Ci
di
pi

(
1−

p2
x,i

p2
i

)

∂H4,7(~α,~zΛ,~zPrim)
∂py,i

= −Cidi
px,ipy,i
p3
i

∂H4,7(~α,~zΛ,~zPrim)
∂pz,i

= −Cidi
px,ipz,i
p3
i

∂H4,7(~α,~zΛ,~zPrim)
∂xx,i

= 1− Ci
px,i
pi

(zPrim,x − xx,i)
di

∂H4,7(~α,~zΛ,~zPrim)
∂xy,i

= −Ci
px,i
pi

(zPrim,y − xy,i)
di

∂H4,7(~α,~zΛ,~zPrim)
∂xz,i

= −Ci
px,i
pi

(zPrim,z − xz,i)
di

∂H5,8(~α,~zΛ,~zPrim)
∂px,i

= −Cidi
py,ipx,i
p3
i

∂H5,8(~α,~zΛ,~zPrim)
∂py,i

= Ci
di
pi

(
1−

p2
y,i

p2
i

)
∂H5,8(~α,~zΛ,~zPrim)

∂pz,i
= −Cidi

py,ipz,i
p3
i

∂H5,8(~α,~zΛ,~zPrim)
∂xx,i

= −Ci
py,i
pi

(zPrim,x − xx,i)
di

∂H5,8(~α,~zΛ,~zPrim)
∂xy,i

= 1− Ci
py,i
pi

(zPrim,y − xy,i)
di

∂H5,8(~α,~zΛ,~zPrim)
∂xz,i

= −Ci
py,i
pi

(zPrim,z − xz,i)
di

∂H6,9(~α,~zΛ,~zPrim)
∂px,i

= −Cidi
pz,ipx,i
p3
i
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∂H6,9(~α,~zΛ,~zPrim)
∂py,i

= −Cidi
pz,ipy,i
p3
i

∂H6,9(~α,~zΛ,~zPrim)
∂pz,i

= Ci
di
pi

(
1−

p2
z,i

p2
i

)
∂H6,9(~α,~zΛ,~zPrim)

∂xx,i
= −Ci

pz,i
pi

(zPrim,x − xx,i)
di

∂H6,9(~α,~zΛ,~zPrim)
∂xy,i

= −Ci
pz,i
pi

(zPrim,y − xy,i)
di

∂H6,9(~α,~zΛ,~zPrim)
∂xz,i

= 1− Ci
pz,i
pi

(zPrim,z − xz,i)
di

Derivatives with respect to p2 and π−

In the following expressions, the subscript “i” stands for the particles p2 and π−.

∂H4,7(~α,~zΛ,~zPrim)
∂px,i

= −CΛ
dΛ
pΛ

(
1−

p2
Λ,x

p2
Λ

)
∂H4,7(~α,~zΛ,~zPrim)

∂py,i
= CΛdΛ

pΛ,xpΛ,y
p3
Λ

∂H4,7(~α,~zΛ,~zPrim)
∂pz,i

= CΛdΛ
pΛ,xpΛ,z
p3
Λ

∂H5,8(~α,~zΛ,~zPrim)
∂px,i

= CΛdΛ
pΛ,ypΛ,x
p3
Λ

∂H5,8(~α,~zΛ,~zPrim)
∂py,i

= −CΛ
dΛ
pΛ

(
1−

p2
Λ,y

p2
Λ

)
∂H5,8(~α,~zΛ,~zPrim)

∂pz,i
= CΛdΛ

pΛ,ypΛ,z
p3
Λ

∂H6,9(~α,~zΛ,~zPrim)
∂px,i

= CΛdΛ
pΛ,zpΛ,x
p3
Λ

∂H6,9(~α,~zΛ,~zPrim)
∂py,i

= CΛdΛ
pΛ,zpΛ,y
p3
Λ

∂H6,9(~α,~zΛ,~zPrim)
∂pz,i

= −CΛ
dΛ
pΛ

(
1−

p2
Λ,z

p2
Λ

)
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E-matrix elements in Cartesian coordinates
Derivatives with respect to p2 and π−

In the following expressions, the subscript “i” stands for the particles p1 and K+.

∂H4,7(~α,~zΛ)
∂zPrim,x

= Ci
px,i
pi

(zPrim,x − xx,i)
di

− CΛ
pΛ,x
pΛ

(zPrim,x − xΛ,x)
dΛ

∂H4,7(~α,~zΛ)
∂zPrim,y

= Ci
px,i
pi

(zPrim,y − xy,i)
di

− CΛ
pΛ,x
pΛ

(zPrim,y − xΛ,y)
dΛ

∂H4,7(~α,~zΛ)
∂zPrim,z

= Ci
px,i
pi

(zPrim,z − xz,i)
di

− CΛ
pΛ,x
pΛ

(zPrim,z − xΛ,z)
dΛ

∂H5,8(~α,~zΛ)
∂zPrim,x

= Ci
py,i
pi

(zPrim,x − xx,i)
di

− CΛ
pΛ,y
pΛ

(zPrim,x − xΛ,x)
dΛ

∂H5,8(~α,~zΛ)
∂zPrim,y

= Ci
py,i
pi

(zPrim,y − xy,i)
di

− CΛ
pΛ,y
pΛ

(zPrim,y − xΛ,y)
dΛ

∂H5,8(~α,~zΛ)
∂zPrim,z

= Ci
py,i
pi

(zPrim,z − xz,i)
di

− CΛ
pΛ,y
pΛ

(zPrim,z − xΛ,z)
dΛ

∂H6,9(~α,~zΛ)
∂zPrim,x

= Ci
pz,i
pi

(zPrim,x − xx,i)
di

− CΛ
pΛ,z
pΛ

(zPrim,x − xΛ,x)
dΛ

∂H6,9(~α,~zΛ)
∂zPrim,y

= Ci
pz,i
pi

(zPrim,y − xy,i)
di

− CΛ
pΛ,z
pΛ

(zPrim,y − xΛ,y)
dΛ

∂H6,9(~α,~zΛ)
∂zPrim,z

= Ci
pz,i
pi

(zPrim,z − xz,i)
di

− CΛ
pΛ,z
pΛ

(zPrim,z − xΛ,z)
dΛ

Derivatives with respect to the secondary vertex parameters
∂H4,7(~α,~zΛ)

∂zΛ,x
= CΛ

pΛ,x
pΛ

(zPrim,x − xΛ,x)
dΛ

− 1

∂H4,7(~α,~zΛ)
∂zΛ,y

= CΛ
pΛ,x
pΛ

(zPrim,y − xΛ,y)
dΛ

∂H4,7(~α,~zΛ)
∂zΛ,z

= CΛ
pΛ,x
pΛ

(zPrim,z − xΛ,z)
dΛ

∂H5,8(~α,~zΛ)
∂zΛ,x

= CΛ
pΛ,y
pΛ

(zPrim,x − xΛ,x)
dΛ
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∂H5,8(~α,~zΛ)
∂zΛ,y

= CΛ
pΛ,y
pΛ

(zPrim,y − xΛ,y)
dΛ

− 1

∂H5,8(~α,~zΛ)
∂zΛ,z

= CΛ
pΛ,y
pΛ

(zPrim,z − xΛ,z)
dΛ

∂H6,9(~α,~zΛ)
∂zΛ,x

= CΛ
pΛ,z
pΛ

(zPrim,x − xΛ,x)
dΛ

∂H6,9(~α,~zΛ)
∂zΛ,y

= CΛ
pΛ,z
pΛ

(zPrim,y − xΛ,y)
dΛ

∂H6,9(~α,~zΛ)
∂zΛ,z

= CΛ
pΛ,z
pΛ

(zPrim,z − xΛ,z)
dΛ

− 1



B Initial vertex of two non-intersecting lines

In general, two particle tracks that originally stem from a common vertex do not
intersect because of the measurement uncertainties. The kinematic refit with intersec-
tion constraint forces the particles to really intersect in a new vertex ~z. However, for
the calculations an initial vertex position ~z0 has to be determined. Since the tracks
probably do not intersect in the first place, the initial vertex has to be calculated as
the mean intersection point, which is the center of the minimum distance between
the two lines.
The particles are represented by straight lines

~ri = ~xi + τi ~pi (B.1)

where ~pi is the momentum of the particles and ~xi a point at which it is evaluated, the
so called emission point. τi is a scalar, which determines the length of the momentum
vector ~pi, that is necessary in order to reach the arbitrary point ~ri on the line. For
the following calculations, the two particles are chosen to be p2 and π−.
The general difference vector of two arbitrary points on the two lines ~d is given by
the following expression.

~d = ~rπ− − ~rp2 = ~xπ− + τπ− ~pπ− − ~xp2 − τp2 ~pp2 (B.2)

The coefficients τπ− and τp2 determine the positions of the points on the respective
lines. The task is now, to find expressions for these two coefficients, so that the
difference vector ~d is orthogonal to both lines. In this case, the magnitude of ~d
represents the minimum distance between the tracks of p2 and π−. The initial mean
vertex of the two particle tracks is located at the center of the minimum distance.

~z0 = ~rp2 + 1
2
~d = 1

2(~rp2 + ~rπ−) (B.3)

The first condition, that ~d is orthogonal to the π− track, reads

~d·~rπ− = 0 (B.4)

yielding the following equation

τπ−p
2
π− − τp2C +Dπ− = 0 (B.5)
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with

p2
i = p2

x,i + p2
y,i + p2

z,i (B.6)
Di = px,i(xx,π− − xx,p2) + py,i(xy,π− − xy,p2) + pz,i(xz,π− − xz,p2) (B.7)
C = (px,π−px,p2 + py,π−py,p2 + pz,π−pz,p2) (B.8)

The second condition is the orthogonality of the p2 track and ~d.

~d·~rp2 = 0 (B.9)

which leads to

τπ−C − τp2p
2
p2 +Dp2 = 0 (B.10)

Solving the two equations B.5 and B.10 for the coefficients, yields

τp2 =
Dπ−C −Dp2p

2
π−

C2 − p2
p2p

2
π−

(B.11)

τπ− =
Dπ−C −Dp2p

2
π−

C2 − p2
p2p

2
π−

C

p2
π−
− Dπ−

p2
π−

(B.12)

The initial mean vertex is now given by the following equation.

~z0 = 1
2(~xp2 + ~xπ− + τp2 ~pp2 + τπ− ~pπ−) (B.13)



C P-value distributions for pp simulations

This appendix shows the p-value distributions for the different constraint combinations
of the kinematic refit applied to full scale pp simulations. The black lines indicate the
significance of the respective combination, which is determined by maximizing the
product of purity and efficiency. The different channels are written in the pictures,
the fractions of the single channels, which remain after the p-value cuts, are quoted
in brackets behind the respective channels.

Figure C.1: Kinematic refit with intersection (p2,π−) constraint. Significance for this
fit: α = 0.6.
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Figure C.2: Kinematic refit with secondary vertex constraint. Significance for this fit:
α = 0.3.



133

Figure C.3: Kinematic refit with invariant mass constraint. Significance for this fit:
α = 0.4.

Figure C.4: Kinematic refit with invariant mass and intersection (p2,π−) constraint.
Significance for this fit: α = 0.6.

Figure C.5: Kinematic refit with invariant mass and secondary vertex constraint.
Significance for this fit: α = 0.2.
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Figure C.6: Kinematic refit with conservation constraint. Significance for this fit:
α = 0.5.

Figure C.7: Kinematic refit with conservation and intersection (p2,π−) constraint.
Significance for this fit: α = 0.04.

Figure C.8: Kinematic refit with conservation and secondary vertex constraint. Signif-
icance for this fit: α = 0.02.
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Figure C.9: Kinematic refit with invariant mass and conservation constraint. Signifi-
cance for this fit: α = 0.03.

Figure C.10: Kinematic refit with invariant mass, conservation and intersection (p2,π−)
constraint. Significance for this fit: α = 0.03.

Figure C.11: Kinematic refit with invariant mass, conservation and secondary vertex
constraint. Significance for this fit: α = 0.007.





Index

Λ(1405), 4–8, 10
K̄N potential, 3, 4
χ2

distribution, 40, 41, 60, 62
statistics, 33
term, 38, 60

asymptotic freedom, 1

background, 31, 41, 47, 62, 78, 79, 82,
84, 91, 93, 94, 99

Bethe Bloch equation, 26
Bethe-Salpeter equation, 5

CDC, 16–20, 23, 25, 43, 66, 70, 89, 91,
94, 99

CDC-RPC matching efficiency, 66, 87,
91, 94, 97

central limit theorem, 41
centrality, 19
charge division, 17
chiral condensate, 2, 3
chiral perturbation theory, 1, 5
chiral symmetry

breaking, 2
restoration, 3

confidence level, 41
confinement, 1
contour, 34, 35
coplanarity, 54, 55, 102, 104
coupled channels approach, 5, 6
covariance matrix, 32, 33, 36, 38–40,

42, 47, 60, 61, 63, 70

dead time, 23
digitizer, 44
drift chamber, 16, 19, 23, 27

energy loss, 26, 27, 94
equation of state, 1
error

overestimated, 60, 63
systematic, 42, 48, 61, 71, 83, 85,

86, 101, 104
type I, 41
type II, 41
underestimated, 58, 60, 63

fake-track, 87, 89, 94
FOPI detector, 11, 15, 19, 26, 43, 49,

65

Gauss-Markov theorem, 33, 62
GEANT, 44, 69
Gell-Mann-Oakes-Renner relation, 2
Goldstone boson, 2

HELITRON, 16, 18, 23, 25, 26, 43, 65,
70, 89, 91, 93, 94, 97, 99

in-medium modification, 2, 3
invariant mass technique, 11, 28, 29, 31

kaonic bound state, 4, 6, 23, 28
kaonic nuclear cluster, 7, 8, 10, 11

Lagrange
equation, 32, 35–39, 52
multiplier, 32–35

lattice QCD, 1
linear dependence, 54
local minima, 46, 50
Lorentz force, 25
luminosity, 22, 23

mass resolution, 31, 45, 48
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mirror tracks, 17
missing mass technique, 11, 29, 31
MMRPC, 12, 16, 19, 20, 25, 28, 66, 91,

94, 97
Monte Carlo truth value, 48, 55, 58
multiple scattering, 32

non-vertex constraint, 43, 44, 52
number of degrees of freedom, 37, 39–

41, 55, 60, 99

p-value, 40–42, 44, 58, 60, 62, 63, 81,
83, 85, 93, 94, 99

particle identification, 15, 19, 25–28, 31
photomultiplier, 19, 21, 22
Plastic Barrel, 16, 19, 20, 25
PLAWA, 16, 21, 23, 25, 28, 65
PLUTO, 43, 44, 69
probability density function, 33, 40, 60
pull distribution, 42, 44, 58, 60, 61, 70,

81, 99

QCD, 1, 2, 5
QCD phase diagram, 1, 2
quark gluon plasma, 1

reaction rate, 23
relative HELITRON efficiency, 87, 97

sagitta, 26
scintillator, 19, 21, 22
SiΛVio, 19, 23–25, 43, 53, 70, 94, 97
signal-to-background ratio, 31
significance, 41, 62, 78, 93
significance level, 41, 62
SIS18, 1, 12, 15
spatial resolution, 18
spline, 26, 43
start detector, 19–22, 25

target, 19, 21, 22, 53
time of flight detectors, 16, 19, 24, 27
time resolution, 20, 21
track representation, 32, 42, 43
trigger, 19, 22–25, 90, 94, 97

UrQMD, 69, 97, 102

vertex constraint, 52
veto detector, 22, 25

ZDC, 16, 21, 25
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