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Abstract

Within this thesis we are investigating how recent fit results for well-deformed rare
earth nuclei [16, 17] within the Extended Consistent Quadrupole Formalism (ECQF)
[14] of the algebraic interacting boson model (IBA) [13, 15] can be understood in
terms of the single-particle structure of these nuclei. Particularly the IBA results
seem to indicate that the softness of the deformation dependent potential in the
γ-degree of freedom, the deformation away from axial symmetry, evolves quite dif-
ferently along different isotopic chains. Therefore we have concentrated on investi-
gating the evolution of the single-particle structure of the γ-vibrational 2+ state in
well deformed rare earth nuclei. The study was performed on the basis of simplified
calculations within the framework of the Random Phase Approximation (RPA) [1,
9-11]. As input, the single particle levels within the deformed shell model (Nilsson
model [12]) were used together with experimentally known ground state deforma-
tions and excitation energies.
The RPA results clearly show the connection between the quasi-particle structure
of the gamma-vibrational state and the fit results of the IBA.
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Chapter 1

Introduction

Within this thesis we are investigating how recent fit results for well-deformed rare
earth nuclei [16, 17, 18] within the Extended Consistent Quadrupole Formalism
(ECQF) [14] of the algebraic interacting boson model (IBA) [13, 15] can be under-
stood in terms of the single-particle structure of these nuclei. Particularly the IBA
resutls seem to indicate that the softness of the deformation dependent potential in
the γ-degree of freedom, the deformation away from axial symmetry, evolves quite
differently along different isotopic chains. The reason for this quite different be-
haviour may lie in the single particle structure of these nuclei. It is the aim of this
work to investigate the potential connection between the different evolution of the
parameters within the IBA to the underlying single-particle structure.
In the first section of the introduction we give a short overview of nuclear models.
After that we go into details concerning the aim of this thesis.

1.1 Single-particle versus collective models

In nuclear structure physics we are concerned with a system of particles whose num-
ber is neither small enough to allow direct solutions nor large enough so that we
are able to apply statistical methods. Furthermore, it was not possible till today to
deduce a final form for the interaction between the particles.

The natural choice of the degrees of freedom in the framework of a single-particle
model is of course given by adopting the degrees of freedom of all particles in the
nucleus. This implies that the wave function depends on all of theses variables. The
corresponding Hamilton operator should incorporate a kinetic term and a poten-
tial representing the nucleon-nucleon interaction taking into account all degrees of
freedom for each pair of nucleons. A further necessity is to include three body inter-
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2 Introduction

actions, as well. It is obvious that even for the fastest computers it is a tremendous
problem to solve the many-body Schrödinger equation directly for nuclei consisting
of more than a few nucleons. Such ab initio calculations have only been performed
for nuclei up to mass A ≈ 10 [6]. It is therefore necessary to look for appropriate
methods of approximation.

The idea, that a nucleus can be approximately considered as a system of independent
nucleons in a spherical average potential which do not interact directly with each
other, is known as the shell model [1, 2, 5]. The fundamental insight which made
this phenomenological single-particle model to a powerful tool in nuclear physics
was the introduction of a strong spin-orbit force in addition to the average potential
(Goeppert-Mayer, Jensen). The Nilsson model [12] which will be extensively used
and discussed in this work is a phenomenological single particle model describing
the energies and wave functions of states in a deformed nucleus [5]. It is an ex-
tension of the well known shell model successfully applied in the spherical case. In
the Nilsson model the symmetry of the nucleus is reduced from spherical to axial
symmetry and the degeneracy of the levels with fixed j (total angular momentum
quantum number) is broken with respect to the magnetic substate quantum number
m. A related effect of a quadrupole deformation of the nucleus on the energy levels
for a growing deformation parameter is the gradual disappearance of the significant
energy spacings known in the shell model at the so-called magic numbers. The
shape of the potential, in which all the nucleons are moving, is determined by the
average field which is generated by the nucleon-nucleon interaction. In the Nilsson
model the mean-field potential is basically that of a three dimensional anisotropic
harmonic oscillator.
The success of the phenomenologically introduced shell model justifies the assump-
tion that nucleons move independently in an average potential produced by all the
nucleons. With the Hartree-Fock method it is possible to extract such a mean
field potential out of the sum of two-body interactions. In modern calculations
non-relativistic and relativistic self-consistent mean-field models are used for the
description of nuclear structure. For recent reviews see Ref. [7, 8].
It was also a theoretical achievement of basic importance in the early 1960s when
it was demonstrated that the macroscopic collectivity as observed for instance in
vibrational excitations of nuclei could indeed result from the shell model - the stan-
dard microscopic model in nuclear physics - with appropriate and reasonable realistic
residual interactions (Ref. [20]).

On the other hand collective models play also an important role. These models
depend on degrees of freedom which do not belong to single nucleons. Instead
they are based on some of the collective properties of a nucleus as a whole. A
trivial example for a collective coordinate is the vector of the centre of mass of the
nucleus. In this simple case it is relatively easy to express the collective coordinate
by the microscopic coordinates which enables us (at least in theory) to shift from
one representation to the other. But in most cases the collective coordinates which
are introduced are without any obvious connection to the microscopic physics. An
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example is the expansion of the surface of the nucleus into spherical harmonics and
to use the coefficients as coordinates. In this special case of a geometrical model [1]
the nucleus is treated as a liquid drop of an incompressible fluid. Excitations of the
surface of the nucleus i.e. oscillations are expressed by a time dependence of the
coefficients obeying an equation of motion.

A completely different approach to describe collective motion in nuclei is the inter-
acting boson approximation (IBA) [13, 15], an algebraic model, developed by Arima
and Iachello in 1974. The basic idea of the IBA is to assume that low-lying collective
states in even-even nuclei can be described by a system of interacting s and d bosons
carrying angular momenta 0 and 2, respectively. In this model pairs of like nucleons
in the valence shell are treated as bosons and the total boson number of the two
kinds of nucleons (for protons and neutrons separately counted to the nearest closed
shell) is conserved in the system. This restriction originates from the assumption
that the s- and d-boson degrees of freedom can be related directly to L=0 and 2 exci-
tations of pairs of fermions1 in a spherical shell-model basis. These bosons may also
interact via one- or two-body interactions with each other. A universal Hamilton
Operator is constructed which is indeed able to reproduce the low-lying collective
levels in various nuclei by adapting some free parameters.

To complete and to round off the previous discussion one can say that the final des-
tiny will be to unite the microscopic and collective models. The way this is supposed
to work is also clear: the collective models should be explained and expressed by
the underlying microscopic approaches. Collective models would be used to classify
spectra and their structure while microscopic models should explain why collective
coordinates of a certain type lead to a valid model.

1.2 Evolution of γ-softness in the deformed rare

earth nuclei

Recently, there have been efforts to determine sets of interacting boson model (IBA)
parameters that reproduce the properties of all low-lying, positive-parity excita-
tions, including the first excited 0+ state, for a wide range of even-even, collective
nuclei [16,17]. In the rare-earth region detailed fits of isotopic chains were shown to
reproduce the energies of positive-parity states and to provide a reasonable descrip-
tion of their transition matrix elements.
The calculations were performed in the framework of the IBA-1. In this model no
distinction is made between neutrons and protons. Furthermore the extended con-
sistent Q formalism (ECQF) [14] was used applying a simplified version of the IBA

1 Due to this relation the pairing force is a crucial ingredient for the assumption leading to the
IBA.
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Hamiltonian. We will go into further details on the IBA in section 3.4.
In this case the Hamiltonian only involves two parameters, ζ and χ, and the cor-
responding parameter space is traditionally represented by a triangle [19] with one
IBA dynamical symmetry at each vertex. The three symmetries are given by ζ = 0,
any2 χ for U(5), ζ = 1, χ = −

√
7/2 for SU(3), and ζ = 1, χ = 0 for O(6). Nuclei

lying in the transition regions between the three symmteries can be described with
intermediate parameter values (figure 1.1). For the explicit mapping of the IBA
symmtery triangle the parameters ζ and χ are transformed into polar coordinates
ρ with 0 < ρ < 1 and θ with 0◦ < θ < 60◦. The angle θ is proportional to the
parameter χ in the Hamiltonian and solely depends on this parameter. The explicit
transformation formula is given in section 3.4. The slanting lines in the triangle
indicate the phase transition region from spherical (nuclei lying close to the U(5)
limit) to deformed nuclei.

Figure 1.1: Trajectories in the IBA symmetry triangle for the Gd, Dy, Er, Hf, and Yb
isotopic chains [16]. The area surrounded by a circle in the triangle on the
right side indicates the approximate location of the Os and W isotopes with
a neutron number of 100, 102 and 104 [17]. The slanting lines enclose the
region of phase coexistence and phase transition from spherical to deformed
(corresponding to calculations performed with a boson number equal to ten).

A look at the parameters determined in the IBA fits ( shown in figure 1.1) for various
rare earth nuclei reveals a crucial difference in the behaviour of the Gd, Dy and Er
isotopic chains in comparison to the Yb and Hf isotopic chains. All nuclei cross the
phase transition region from spherical to deformed around neutron numbers 88 and
90. Past this region the Gd, Dy isotopes start out at the bottom of the triangle, Er

2 this is not excactly correct: The U(5) Hamiltonian is indeed independent of the parameter χ, but
the E2 operator still depends on χ. Therefore the IBA symmtery triangle should actually be a
rectangle.



1.2 Evolution of γ-softness in the deformed rare earth nuclei 5

starts out rather at the center of the triangle, and they all move towards the O(6)
limit, while the Yb and Hf isotopes move from a position near the U(5)-O(6) leg of
the triangle towards the U(5)-SU(3) leg.
This drastic change of the evolution within the triangle when going from Er to Yb
(just adding two protons) seems quite puzzling. The explanation of the trends in
the framework of the underlying single-particle structure is the central aim of the
present work.
For this purpose it seems to be a reasonable starting point to consider the micro-
scopical composition of the collective gamma-vibrational 2+ state. We will justify
this claim in the following paragraph.

In chapter 2 we will introduce the geometric collective model (GCM) [1, 5] in which
the surface of the nucleus is expanded into spherical harmonics. The quadrupole
deformations consist of five independent degrees of freedom, among those are two
surface parameters, describing the β and the γ-degree of freedom, and three angles.
In the GCM Hamiltonian the potential V is dependent on β and γ (chapter 2
equation (2.2)). The IBA symmetries just introduced correspond to certain solutions
of the GCM determined by the shape of the potential V (β, γ). For a deformed
nucleus the two IBA symmetries SU(3) (χ = −

√
7/2, θ = 0◦ and ζ = 1) and O(6)

(χ = 0, θ = 60◦ and ζ = 1) are equivalent to the deformed axially symmetric rotor
and the gamma-unstable deformed rotor in the GCM, respectively.
The potential V for the deformed axially symmetric rotor has a minimum at a
deformation parameter β 6= 0 and in the γ-direction the potential has a minimum
at 0◦. For small excursions in the γ-direction away from the minimum the potential
shows a steep rise. Nuclei with such a potential are called γ-rigid.
The limit of the gamma-unstable deformed rotor is also given by a finite quadrupole
distortion, but the potential V is completely independent of the parameter γ (i.e.
it has a flat shape in this direction). Consequently the nuclei corresponding to this
limit are called γ-soft. The U(5) limit corresponds to the spherical vibrator with a
potential showing a minimum at β = 0 and γ = 0◦. In fact for a U(5) nucleus the
notion of gamma-softness does not make sense anymore.

This discussion shows that the IBA parameter χ (and the angle θ) are in some way
related to the gamma-softness of nuclei. Actually nuclei lying on the U(5)-SU(3)
leg of the triangle are gamma-rigid and analogously nuclei lying on the U(5)-O(6)
leg of the triangle are completely flat in the gamma direction.
The different evolution of the Gd, Dy, Er isotopic chains in contrast to the Yb, Hf
isotopic chains can now be classified in terms of increasing and decreasing gamma-
softness.
When we speak of gamma-softness in the context of the well-deformed rotational
nuclei with R4/2 values larger than 2.9 we do not refer to the potential energy
surfaces (GCM potentials) that are nearly independent of γ. However, depending
on the angle Θ in the IBA triangle the potentials are more (Θ ≈ 0◦) or less (Θ ≈ 60◦)
stiff in the γ-degree of freedom.
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It is the aim of the present work to investigate if the different evolution of the ECQF
IBA fit paramters [16, 17] within the symmetry triangle can be understood in terms
of a microscopic picture. Since the value of χ and thus the angle Θ is related to the
γ-softness we expect that there is some relation to the microscopic structure of the
γ-vibrational 2+

γ state. Thus we will investigate how the structure of the 2+
γ state

evolves within a simplified RPA approach along the isotopic chains.

The chapters of this thesis are organized in the following way: In chapter 2 we start
out with a review of the phenomenological description of collective motion in nuclei
and introduce the geometric collective model (GCM) [1, 5]. After that we focus on
the gamma-vibration in the context of the rotation-vibration model [1] and finally
describe the microscopical properties of collective excitations. Chapter 3, ”Descrip-
tion of models”, forms the basis for the calculations performed in the present work.
We discuss the Nilsson model [12] and pairing correlations [5]. Finally we introduce
the Random Phase Approximation [1, 9-11] in order to treat the gamma-vibration
in deformed nuclei. A short excursion reviewing the basics of the Interacting Boson
Model (IBA) [13, 15] is included at the end of the chapter.
In chapter 4 the results concerning the microscopical composition of the gamma-
vibrational wave function obtained in our calculations for Gd, Dy, Er, Yb, Hf, Os,
W and Pt isotopes are presented. We also discuss various simplifications applied
in our approach and their consequences. For some nuclei the composition of the
wave function is compared to previous calculations by Bès et al. (Ref. [20] ) and
Soloviev et al. (Ref. [24, 27] ) showing that our simplified model reproduces the
main features obtained by these more sophisticated models. Chapter 5 contains the
discussion of our results with regard to the evolution of the rare-earth nuclei in the
symmetry triangle determined in the recent IBA fits by McCutchan et al. [16,17] as
outlined in the introduction.



Chapter 2

Phenomenological description of
collective nuclear motion

The most obvious characteristic of nonspherical nuclei is that they can undergo ro-
tations about an axis perpendicular to the symmetry axis. They can, of course, also
vibrate and, moreover, rotations can be coupled to vibrational motion. Considering
the low-lying energy spectra of deformed even-even nuclei, exactly these collective
modes i.e. the corresponding states, can be observed. At higher energies of more
than ≈ 2MeV , starting at about twice the pairing-gap, in deformed even-even nuclei
single two-quasiparticle excitations1 are also observed. These characteristic vibra-
tional and rotational band structures have been for the first time interpreted in the
geometric collective model [1] which was proposed by Bohr and Mottelson and refers
to excitations of the surface of the nucleus. More precisely speaking, the underlying
physical picture of the nucleus used here is that of a classical, charged liquid drop.
This concept is also leading to the well-known Bethe-Weizsäcker mass formula [3].
In the current application it is extended with the feature of dynamical excitations
of the nucleus. As already stated, the nuclei are assumed to have a constant mass
densitiy (incompressibility of nuclear matter) and a sharply limited surface. The
interior structure i.e. the excistence of individual nucleons is neglected in favour of
a homogenous, liquid-like nuclear matter.
Along with these assumptions the moving surface of the nucleus can be parameter-
ized by an expansion into spherical harmonics with time-dependent surface param-
eters as coefficients.

R(θ, φ, t) = R0[1 +

∞
∑

λ=0

λ
∑

µ=−λ

α∗
λµ(t)Yλµ(θ, φ)] (2.1)

1 For the moment the two-quasiparticle excitations may be considered as simple particle-hole ex-
citations - they will be discussed extensively later on in the theoretical part about the pairing
force.
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8 Phenomenological description of collective nuclear motion

R(θ, φ, t) is the radius of the nucleus in direction (θ, φ) at the time t. R0 denotes the
radius of a nucleus with a spherical shape which comes about if all the coefficients
αλµ vanish. These time dependent amplitudes describe the vibration of the nucleus
and thus serve as collective coordinates. Their equation of motion is determined by
the corresponding Hamilton operator.
The multipole expansion just derived shows that there are several kinds of possible
multipole deformation. For λ = 0 we have the monopole mode which is connected
with a change in the radius of the nucleus. An excitation of this mode would re-
quire a lot of energy because of the almost incompressible nuclear matter. Dipole
deformations λ = 1 lead in the lowest order just to a translation of the center of
mass of the nucleus and thus they should not be considered for nuclear excitations.
Finally, quadrupole deformations with λ = 2 (the parity π is given by (−1)λ) are
one of the most important collective excitation modes of nuclei. Modes with higher
angular momentum than λ = 4 have no further importance2.
It is possible to show mathematically that there are only five independent degrees
of freedom connected with the quadrupole deformations. A transformation3 of the
corresponding coordinates leads to a more convenient interpretation of the expan-
sion coefficients. It yields three Euler angles and two intrinsic variables.
The Euler angles determine the orientation of the nucleus referring to the labora-
tory system. The two parameters β and γ represent the extent of the quadrupole
deformation and the degree of axial asymmetry, respectively. Most deformed nuclei
are axially symmetric in their ground states corresponding to γ = 0◦ (completely
triaxial shapes have 30◦). Prolate nuclei have a deformation parameter β > 0 and
oblate nuclei consequently have a deformation parameter β < 0 (β ∼ ∆R/Rav with
∆R being the difference between semi-major and semi-minor axes of the spheroid
and Rav = r0A

1/3 being the average radius). The larger the value of β the more
deformed the nucleus. The essential difference between prolate and oblate shapes is
that the former is extended in one direction and squeezed in two, while oblate shapes
are extended in two and compressed in one. All of the rare-earth nuclei considered
in this work have a prolate shape [5].
The advantage of the transformation just introduced is that rotations and vibra-
tions of the surface are clearly separated from each other. A change in the Euler
angles describes a pure rotation of the nucleus without any change of its shape. It
should be explicitly mentioned that quantum mechanical symmetry arguments do
not permit a spherical nucleus to have any rotational excitations and a nucleus with
axial symmetry may not execute rotations around its symmetry axis, only around

2 Just to be complete: octupole deformations with λ = 3 are the leading asymmetric modes of the
nucleus and are connected with negative parity states. λ = 4 modes are sometimes observed as
admixtures to quadrupole excitations.

3 definition of β, γ and Ω: α′
20 = βcos(γ), α′

22 = βsin(γ)/
√

2, α2µ =
∑

ν D2
µν(Ω)α′

2ν where D2
µν

is a rotation matrix and Ω represents the three Euler angles, α2µ are the expansion coefficients
from formula (2.1)
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axis perpendicular to it. The geometric collective model (GCM) Hamiltonian in a
simplified form [5] is given by formula (2.2).

H = T + V =
1

B2

[π × π][0] + C ′
2β

2 + C ′
4β

4 − C ′
3β

3cos3γ (2.2)

It contains 4 parameters: B2 for the kinetic energy and C ′
2, C

′
4, C

′
3 for the potential.

π are the conjugated momentum coordinates. This Hamiltonian is able to describe
low energy collective motion in nuclei from purely vibrational to axially symmetric
rotors as well as transitional nuclei between these extreme limits.

The most important special case of collective surface motions is given by well-
deformed nuclei which have a deep energy minimum at an axial deformation (β0 6= 0)
like a rigid rotor, but with the additional possibility of small oscillations in the β- and
γ- degrees of freedom (all of the rare-earth nuclei considered in this work are such
candidates) [1]. In the framework of this rotation-vibration model [1] the following
formula represents the energy spectrum that is expected.

EnβnγIK = ~ωβ(nβ +
1

2
) + ~ωγ(2nγ +

1

2
| K | +1) +

~
2

2J
(I(I + 1) −K2) (2.3)

The quantum number K is the projection of the angular momentum I on the sym-
metry axis of the nucleus. It is obvious that for a given K the quantum number
I has to obey the relation I ≥ K. The angular momentum cannot be less than
its projection. nβ and nγ are the quanta of the vibration in the β- and γ-degree
of freedom, respectively. J represents in this context the moment of inertia. The
quantum numbers are permitted to take on the following values:

K = 0, 2, 4, ... (2.4)

I =

{

K,K + 1, K + 2, ... forK 6= 0

0, 2, 4, ... forK = 0
(2.5)

nγ = 0, 1, 2, ... and nβ = 0, 1, 2, ... (2.6)

The structure of the spectrum is shown in figure 2.1 on the next page. The bands
are characterized by the quantum numbers that have just been introduced. They
obey to the I(I + 1) rule of the rigid rotator.
The ground state band (g.s.) is shown on the left with an even I of all levels. The
β-band with one vibrational quantum in the β-direction starts at an energy of ~ωβ

above the ground state band (one phonon excitation) and contains also only even
angular momenta. From all the other bands that are shown in the illustration the
γ-band is of major importance here because the present work is dedicated to inves-
tigate the first excited state 2+

γ of the gamma-vibrational band.

The γ-band is not, as the name suggests, simply the band with a vibrational quan-
tum in the gamma-direction. Instead the projection of the angular momentum on
the symmetry axis, K, is equal to 2. The spectrum of the γ-band starts with a 2+
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Figure 2.1: Structure of the energy spectrum resulting from the rotation-vibration
model. In deformed nuclei the levels near the ground state belong to a
rotational band (characteristic I(I + 1) energy spacing). However, they ex-
hibit excited states of the vibrational type, the most important ones being
the quadrupole β- and γ-vibrational states. The ground state rotational
band is accompanied by several other rotational bands which are built upon
the vibrational excitations. (Indeed there have been doubts in the last years
whether the K = 0 band can be really identified with the β-vibration, but
this is of minor interest for this work.) This illustration was redrawn from
Ref. [1].

state and contains the odd angular momenta, as well.
The band head has an excitation energy of Eγ = ~2

J
+ ~ωγ and therefore it incor-

porates both a contribution of the rotation and a contribution of the γ-vibration.
Indeed there is a strong coupling between the gamma-vibration and rotational mo-
tion. Rotations with a non vanishing K value (for the bandhead of the γ-band with
I = K this means rotations around the symmetry axis of the nucleus) are only
possible in the presence of dynamical triaxial deformations (remember the quantum
mechanical limitation just discussed).

Illustrations of the β-vibration and especially the γ-vibrational motion are shown in
figure 2.2. The β-vibration with K = 0 is aligned along the symmetry axis (fluctu-
ations in the quadrupole deformation β) and therefore it preserves axial symmetry.
The K = 2 γ-vibrational mode represents a dynamic time-dependent excursion from
axial symmetry (osciallations in γ). It has an average value of γ = 0◦ but the val-
ues of maximum triaxiality at the turn back points during vibration can be large.
However the vibration is a rather complex motion. A pure shape oscillation would
not lead to an angular momentum projection of K = 2 along the symmetry axis of
the nucleus. During the vibrational motion the axial symmetry is broken and that
is why additionally a rotation about the former symmetry axis can occur. The su-
perposition of the vibrational and rotational motion is therefore a kind of oscillating
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Figure 2.2: Left side: Let us assume that the deformed nucleus has an equilibrium pro-
late axial symmetric shape (3 denotes the symmetry axis). When the pro-
late spheroid remains a prolate spheroid and only its degree of deformation
changes in course of the oscillation, we have the β-vibration. Similarly, when
the prolate spheroid keeps its deformation parameter the same, but acquires
a little bit of a triaxial shape during the course of oscillation we have a γ-
vibration. This illustation on the left side was taken from Ref. [2].
Right side: This picture shows a schematic illustration of the motion in a
γ-vibration. The symmetry axis points out of the page. The circle represents
an end-on view of the axially symmetric ground state shape. The ellipses are
the extremes of squashing during the vibrational excursions away from axial
symmetry. The arrows represent the rotational motion about the symmetry
axis which occurs when the nucleus takes on axially asymmetric shapes. This
illustration was taken from Ref. [5].

tumbling motion about the symmetry axis of the deformed nucleus in its ground
state [5]. The rotational band built on top of the gamma-virbation does not change
K = 2 because the projection of any rotation perpendicular to the symmetry axis
onto this axis is of course zero.

So far we have discussed the geometrical features of the γ-vibration. In this work
the microscopic structure of the first excited gamma vibrational state will be ex-
amined extensively and thus the last part of this introduction shall illuminate the
microscopical properties of collective excitations such as the γ-vibration.

As already mentioned in the last section the nucleus can be described as a many-
body system which consists of nucleons moving in an average field. These nucleons
are interacting weakly through a residual interaction - in the special case of the
γ-vibration particle-holde exciatations are assumed to be generated by the r2Y2±2

operator. Of course the pairing force is also taken into consideration by absorbing its
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effect into the ground state, which becomes therefore more complex, and by chang-
ing the elementary excitation mechanism from particle-hole to two quasi-particle
excitations.

It is obvious that such a many-body system will have excited states corresponding to
the excitation of one or a few pairs of quasi-particles. This type of excitation mode
of the nucleus is well-known near closed shells with single-particle/hole excitations.
Moreover, there is an altogether different kind of excitation mode of a many-body
system - a mode in which many particles/quasi-particles participate in a coherent
manner which is called a collective state. To be more precise, one can say that for
an even-even nucleus the elementary non-collective excitation modes of the lowest
energies correspond to the creation of a pair of quasi-particles and the microscopic
theory of vibration can be built up by the coherent superposition of many quasi-
particle pair states.

In case of the 2+
γ state the angular momenta of the two-quasiparticle excitations

couple to a total angular momentum of 2~. Indeed, the simplest explanation for
a 2+ state could be the breaking of only one pair of nucleons4 and the coupling of
these two nucleons to the second energetical favourable configuration with Jπ = 2+

(according to the Pauli principle two like fermions in the same orbit may only be
coupled to an even angular momentum and moreover assuming a reasonable short-
range interaction the coupled states are not degenerate anymore - the lowest state is
0+, followed by 2+). But the very low energy of the state in question in comparison
to the energy of two quasi-particle excitations and measurements of the reduced
transition probabilities to the ground state which turn out to be much higher than
those for one-particle/two quasi-particle excitations spoil this simple interpretation.
They suggest the participation of many nucleons. Indeed it is relatively easy to
construct K = 2 two quasi-particle states by breaking up many nucleon pairs and
elevating one particle of each broken pair to an excited quasi-particle level. Of
course only couples of single-particle states that are connected by the r2Y2±2 operator
and thus have a non-zero transitional matrix element between them can contribute
(corresponding to the mechanism just mentioned) to the gamma vibration.

The summarized characteristic features of collective states are thus low excitation
energies, compared to single two quasi-particle excitations (which have an energy of
at least twice the pairing gap with about 1.5− 2MeV ), and furthermore due to the
many contributing components high electromagnetic reduced transition probabilities
to the ground state which are observed experimentally [3].

In general one can say that the collective correlated wave function consists of a
sum of almost equal amplitudes for all particle-hole/two quasi-particle excitations.
All of the amplitudes are in phase i.e. they contribute with the same sign. This

4 The coupling of two like nucleons to a pair with J = 0+ is a consequence of the pairing residual
interaction. Furthermore it is responsible for the 0+ ground state of all even-even nuclei.
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means that collective vibrations can be written as a linear combination of two-
quasiparticle excitations (in the non-pairing terminology, particle-hole excitations)
across the Fermi surface5 [5].

The microscopic picture of the vibration, as outlined above, apparently seems rather
far-fetched from the classical picture of the vibration which consists of a certain dy-
namical variable oscillating as a function of time. In reality, however, there is indeed
an underlying link between these pictures. The nuclear vibrational state, which is a
coherent superposition of many elementary excitation modes of the particle-hole (or
pair of quasi-particles) type, corresponds to a single-particle densitiy variable that
oscillates in time.

In the following chapter the single-particle character of the γ-vibration will be shown
more explicitly when we introduce the Random Phase Approximation (RPA).

5 The Fermi level denotes the highest occupied level in a nucleus. In the context of the pairing force
a generalized Fermi energy is defined. This becomes necessary because the occupation probability
of the nucleons near the former (shaply defined) Fermi level is now smeared over some states as
a consequence of pair scattering.



Chapter 3

Description of the models

In this chapter the appropriate framework for the construction of single-particle
states in deformed nuclei is introduced. After that the pairing residual interaction
is discussed and we show its crucial impact on the single-particle states. Further-
more the random phase approximation (RPA), a powerful tool in treating collective
excitations in nuclei, is derived and the basics of the interacting boson model (IBA)
are discussed.

3.1 Nuclear deformation and the Nilsson model

In spherical nuclei, i.e. nuclei with neutron and proton numbers near closed shells,
the well-known shell model [1, 2] is used to treat the states in order to set up the
single-particle wave functions and to classify the corresponding quantum numbers.
However, a lot of heavy nuclei are well-deformed with neutron and proton numbers
far away from closed shells. The investigation of the impact of the quadrupole
deformation on single particle orbits leads to a new approach as a refinement of
the shell model, the Nilsson model [12] which treats the single-particle states in a
deformed potential.
In this work we will concentrate on the well deformed rare earth nuclei (figure 3.1)

with R4/2 ≡ E(4+

1
)

E(2+

1
)
> 2.90. We will also treat, for comparison, γ-soft and transitional

nuclei, like the Pt isotopes, with R4/2 ≈ 2.5.

In the shape transition region the evolution from spherical nuclei with vibrational
character to deformed nuclei is connected with a change in their characteristic low-
lying energy levels. For an ideal spherical harmonic vibrator the one phonon exci-
tation yields a 2+ state and at twice this energy we find the two phonon excitation
with three degenerate states with Jπ = 0+, Jπ = 2+ and Jπ = 4+ (R4/2 ≈ 2.0). In
the deformed nuclei the ground-state band with R4/2 close to 3.33 takes on rota-

14
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tional character. Additionally one finds a low lying K = 2, 2+ level as band-head
of the gamma-vibrational band and a K = 0, 0+-band.

Figure 3.1: Areas of deformed nuclei in the N-Z-plane. The siginficantly deformed re-
gions are marked by surrounding ellipsoids and the hatched area in between
denotes stable deformed nuclei. The horizontal and vertical lines denote the
magic numbers (closed shells) for neutrons and protons, respectively. The
well-deformed rare-earth region is located between 50 and 82 protons and
between the neutron numbers of 82 and 126. The illustration comes from
the textbook of Mayer-Kuckuk [2].

The average field in which individual nucleons are moving is generated, as already
mentioned, exclusively by the interaction with all other nucleons. This implies that
the shape of the field is directly related to the density distribution of the nucleons.
Since the average field with independent particle motion is only a rough approx-
imation residual interactions have to be taken into account to make a reasonable
approach to the physics of the nucleus.
The spherical shell model is based on the non-relativistic Schrödinger equation for
single particles states with a certain potential V (~r).

(− ~
2

2m
∇2 + V (~r))ψi(~r) = ǫiψi(~r) (3.1)

A reasonable choice of the potential should be a function which has a constant
behaviour in the center of heavy nuclei corresponding to the constant mass density
of nuclear matter and which decreases rapidly outside the nuclear surface. The best
phenomenological potential is the Woods-Saxon potential (3.2) which has a shape
that is very similar to the measured experimental density distributions of nuclei.
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V0 ≈ 50MeV is the depth of the potential, R is the radius of the nucleus defined by
R = 1.3fm · A1/3 and a is the thickness of the surface a ≈ 0.5fm.

V (r) = − V0

1 + exp[(r − R)/a]
(3.2)

Although the harmonic oscillator potential (3.3) goes to infinity instead of dropping
off to zero for large distances from the center of the nucleus, it is frequently used
because of its simple and analytically determinable solutions. Its potential has the
form:

V (r) =
1

2
mω2r2 ; ~ω ≈ 41MeV/A1/3 (3.3)

Figure 3.2: Illustration of the Woods-Saxon potential (3.2) and the harmonic oscillator
potential (3.3).

Unfortunately all of the suggested potentials are not able to reproduce more than
the lowest three magic numbers. It was the introduction of a strong spin-orbit force
that couples the spin and the angular momentum of each nucleon which made the
nuclear shell model successful (Goeppert-Mayer, Jensen). The additional term in

the single particle potential can be written as C · (~l ·~s). C is a constant determining

the strength of the spin-orbit force and has a negative sign. Furthermore a ~l2 term
is usually incorporated to lower the energies of the single particle states which are
closer to the surface of the nucleus. This corrects the steep increase of the harmonic
oscillator potential in this area.
The energy levels are characterized by the radial quantum number n, the angular
momentum l and the total angular momentum j. The parity of the states is given
by the expression (−1)l. Each of these states is degenerate 2j + 1-times with the
magnetic quantum numbers mj = −j,−j + 1, ..., j − 1, j. This approach finally
yields the correct magic numbers 2, 8, 20, 28, 50, 82 and 126 both for neutrons and
protons i.e. there are big energy gaps in the level scheme to the next empty j-shell
for these particle numbers. The ground states of the various nuclei are constructed
by simply filling up the single particle states until the Fermi level is reached. The
protons differ from the neutrons because of their electric charge and therefore the
Coulomb potential should be taken into consideration. In order to get stable nuclei
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it is important that the Fermi level of the neutrons is equal to the Fermi level of
the protons. Otherwise the difference will be equalized by a β-decay. Hence the
proton states which are populated with less particles than the neutron states are
lifted by the Coulomb potential. Usually the influence of the Coulomb potential on
the energy level sprectrum is ignored and the same level distribution is taken both
for neutrons and protons. Of course this yields different Fermi levels for neutrons
and protons because the energy levels are filled with a different number of particles.

It is relatively easy to generalize the single particle shell model to treat nuclei with
a ground state deformation β0 which is unequal to zero. The fundamental idea of
this extended shell model, the so called Nilsson model, is to choose a deformed three
dimensional harmonic oscillator potential with different oscillator constants ωx, ωy,
ωz in the three directions of space.

V (~r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (3.4)

The geometrical surface of the nucleus is defined as the set of all points (x, y, z)
obeying to

1

2
mω2

0R
2 =

m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (3.5)

where ~ω0 = 41MeV/A1/3 is the oscillator constant of the equivalent spherical nu-
cleus with the radius R = r0A

1/3. It is obvious that equation (3.5) describes an
ellipsoid with the axes X, Y and Z given by ω0R = ωxX = ωyY = ωzZ. Further-
more it is necessary to impose the constraint of incompressible nuclear matter which
requires the volume of the ellipsoid to be equal to the volume of the corresponding
sphere which means R3 = XY Z and ω3

0 = ωxωyωz, respectively.
Assuming that the nucleus is axially symmetric with respect to the z-axis (a spheroid),
i.e. ωx = ωy, and the deviation from a spherical shape is small, it is possible to ex-
press the corresponding oscillator constants in the three directions of space in a first
order approximation using a deformation variable δ.

ω2
x = ω2

y = ω2
0(1 +

2

3
δ) ; ω2

z = ω2
0(1 − 4

3
δ) (3.6)

For a prolate deformed spheroid with δ > 0 the frequencies ωx,y are larger than
ωz. The shape of the potential adopts the assumed nucelar density distribution and
thus lowers the energy for oscillations along the symmetry axis z (i.e. making the-
ses oscillations more preferable), while the potential in the x-y-plane perpendicular
to the symmetry axis increases. In the introduction the ground-state quadrupole
deformation parameter β0 was used. The parameter δ applied in this chapter and
the parameter β introduced in the collective model are almost the same for small
deformations. The connection between them is given by δ ≈ 3/2

√

5/4πβ ≈ 0.95β.
Finally, it is possible to express the appropriate single-particle Hamiltonian for a
nucleus with a quadrupole deformed axially symmetric shape around the z-axis as

H = T + V =
~p2

2m
+

1

2
m[ω2

x(x
2 + y2) + ω2

zz
2] + C~l · ~s+D~l2. (3.7)
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The spin-orbit coupling term is parameterized with a constant C and the strength
of the ~l2-term is controlled by a constant D, respectively. The two terms ensure
the proper order and energies of the single-particle levels in the spherical limit (the
shell model corresponds to β0 = 0). The appropriate values of the parameters dif-
fer for protons and neutrons and also depend on the nucleon number. Using this
deformation-dependent Hamiltonian, the single-particle energies can be calculated
as a function of δ. A plot of single-particle energy against deformation is known as
a Nilsson diagram, as shown in figure 3.3 for nucleon numbers below 50.

Figure 3.3: Nilsson diagram for protons and neutrons taken from the Nuclear Data
Sheets [33]. The deformation paramter ǫ2 which is used in these diagrams is
equal to δ. A prolate deformation is given for ǫ2 > 0. The diagram starts
shortly before the magic number of 20 nucleons and displays states up to the
magic number of 50 nucleons. For large deformation parameters the typical
gaps known in the spherical shell model between shell closures vanish. For a
zero deformation the spherical shell model quantum numbers nlj are given.
The deformed states are labled with the asymtotic quantum numbers. The
parity of the states is indicated by solid π = +1 and dashed lines π = −1.
The energy is given in units of ~ω (in our notation ~ω0 ).

The Nilsson orbitals can be characterised by the so-called asymptotic quantum num-
bers:

Kπ[N, nz,Λ] or alternatively [N, nz,Λ,Σ] / [N, nz,Λ,±] (3.8)
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N is the principal quantum number denoting the major shell (number of the total
oscillation quanta), K is the projection of the single-particle angular momentum j
(which is no good quantum number anymore for β 6= 0) onto the symmetry axis
z. Furthermore, Λ is the projection of the orbital angular momentum onto the
symmetry axis and nz is the number of oscillator quanta / number of nodes of the
wave function along the symmetry axis. The parity π of the state is determined by
(−1)N . The projection of the intrinsic spin of the nucleon onto the symmetry axis
is Σ = ±1

2
, thus it is possible to define K = Λ ± 1

2
. The ± in the last alternative

notation just indicates whether the spin aligns or antialigns with the orbital angular
momentum. There is another useful condition: If N is even, then nz + Λ must also
be even. Similarly, if N is odd, then nz + Λ must also be odd.
The Nilsson diagram in figure 3.3 shows at zero deformation the well known 2j+ 1-
fold degeneracy of the spherical shell model. For non-zero deformation the j states
split into two-fold degenerate levels. Thus a spherical shell model state j spreads
into j + 1

2
two-fold degenerate levels. In the Nilsson model the former shell model

degeneracy is broken according to the orbit orientation (K value / magnetic substate
mj) and each Nilsson orbit can contain only two nucleons corresponding to the two
ways (±K) in which a nucleon can orbit a nucleus (clockwise or counterclockwise).
Many properties of the Nilsson model can be understood in simple terms. If one
considers the motion of particles around a prolate deformed shape, as shown in
figure 3.4, it is possible to define the classical orbit angle θ, as being approximately
θ = sin−1(K/j).

j

K z
q

Figure 3.4: Illustration of the bulk of a prolate deformed nucleus with a single particle
orbiting in the deformed Nilsson model potential. Furthermore the quantities
j, K and θ are defined.

According to the illustration in figure 3.4 it can be seen that low K values correspond
to motion around the equator of the nucleus. Since the orbiting nucleon spends more
time closer to the bulk of the nuclear matter, these equatorial orbits will be lower
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in energy because the nuclear force is attractive and of short range. On the other
hand the orbital plane for the highest K values is more or less perpendicular to
the symmetry axis and thus the energy of this state will be significantly higher.
Consequently, the energy depends on the orientation with respect to the nuclear
symmetry axis (K splitting). Moreover, the energies change linearly with increasing
deformation δ. In addition, the angle θ changes slowly for low K and more rapidly for
higher K (property of the sine-function) and thus the difference in energy between
successive K values increases with increasing K. This effect can be seen in the Nilsson
diagram in figure 3.3. Especially the 1g9/2 shell model orbit (emphasized by a circle)
is a good example. For oblate deformations (δ < 0) the line of reasoning is basically
the same and the energy dependence of the K values is exactly the opposite.
Another interesting feature is given by the fact that orbits with low K values from
the shell with the higher j decrease in energy faster with deformation than those
from lower j-shells. For the same K a higher j-value leads to a lower angle. Therefore
states with the same K and parity can approach each other although the original
shell-model energies have a distinct separation.
It is forbidden by the Pauli Principle that any two levels with the same quantum
numbers may cross (level-level repulsion). Thus we can expect that as an orbit
approaches another with the same Kπ (in fact K and the partiy π are the only
remaining good (i.e. exactly valid) quantum numbers in deformed nuclei) the two
levels will repel each other (an infinitesimal interaction will cause them to repel
when they get sufficiently close). The interaction between the two orbitals means,
however, that although the levels do not cross, the wave function properties are
exchanged at the inflection point. This feature can be seen several times in figure
3.5. In the area surrounded by the circle, for example, the 1/2+[411] level originating
from the 3s1/2 state approaches the down sloping 1/2+[660] level originating from
somewhere in the 82 to 126 shell. Indeed the levels do not cross but the two states
completely mix at the inflection point i.e. for the deformation where the energies of
the two states would have crossed the wave function consists of an equal admixture
of both states.

Another point to note is that the higher the shell, denoted by the quantum number
N, the stronger the effects just discussed will be, since a particle in a higher shell is
at larger radius and thus has more to gain energetically upon deformation - if it is
located in the equatorial plane.
Neglecting pairing correlations as a rough estimate, in a deformed region the Nilsson
orbits are sequentially filled, two protons and neutrons to each successive level until
the final neutron / proton number is reached. In order to calculate the total energy
of a nucleus a summation of all populated single-particle energies can be made. The
steep down-slope of some orbitals as a function of increasing deformation leads to
the conclusion that some deformed configurations will have lower energy than a
spherical one. Thus, within the framework of the Nilsson model, it is possible to
predict stable deformation for nuclei removed from closed shells.
Another important point concerns the separation of rotational and single-particle
degrees of freedom. For low spin states it is common to assume that an approximate
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Figure 3.5: This illustration is a part of the 50 to 82 shell of the Nilsson diagram for
neutrons. Mainly the part for a prolate deformed nucleus is shown. For a
rising nucleon number the level density increases dramatically. Therefore it
becomes more likely that levels with the same quantum numbers approach
and avoided level crossings can be observed. The diagram was taken from
the Nucelar Data Sheets [33].

separation is valid. The single nucleon motion is first evaluated in a body-fixed frame
of reference i.e. in the Nilsson model as just derived. Later on the rotational motion
is superimposed often neglecting the Coriolis interaction. This way of treatment
can only be applied if the nucleus is essentially stationary during a single orbit of
the nucleon around the bulk (adiabatic approximation). A model which explicitly
incorporates the coupling of single-particle and rotational degrees of freedom is called
the cranked Nilsson model, but since in this work we are only looking at the first
excited state of the gamma-vibrational band these refinements are beyond the scope
of this work.

Up to this point in the discussion we have only considered the behaviour for small
quadrupole distortions: When deformation sets on, the spherical shell-model quan-
tum number j is no good quantum number anymore. However, it remains an ap-
proximately good quantum number for small values of δ. The interaction that leads
to configuration mixing of different j shells in the Nilsson model is of quadrupole
form and it is not surprising that it increases with deformation. As we have shown,
the orbits are characterized by their K quantum numbers and the splitting is linear
in δ. Moreover, only K, the parity π = (−1)N and N, respectively, are still good
quantum numbers, because their operators commute with the entire Hamlitonian.
For large deformations the energies are again linear in δ. This can be easily seen,
because the oscillator frequencies are linear in this parameter. The ~l ·~s and ~l2 terms
will be negligible in this limit and the Hamiltonian simply reduces to an anisotropic
harmonic oscillator whose form shows that the motion clearly separates into inde-
pendent oscillations in the z direction and in the x-y-plane. This also means that
the quanta in these directions, nz and nx + ny (with N = nx + ny + nz), separately
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become good quantum numbers. Since the Hamiltonian is now independent of the
angle φ around the z axis, the z-projection of both the orbital and spin angular mo-
menta of a particle must be constants of motion. In the limit of large deformations
the Λ and Σ asymtotic quantum numbers - as well as nz - consequently become good
quantum numbers. The energies depend on the quantum number nz now and the
lowest lying orbits have nz = N,N − 1, ... while from the midshell region up to the
end of a shell nz = 2, 1, 0 orbits predominate (remember that ωz < ωx,y and thus
the energy for oscillations with more quanta along the symmetry axis z is lower).

3.1.1 Wave functions and interaction matrix elements

By substituting the single-particle Hamiltonian in equation (3.7) into the eigenvalue
equation Ĥφi = Eiφi, it is possible to determine the energies and wave functions of
the deformed single-particle states. For small deformations it is reasonable to expand
the wave functions in a spherical basis because they involve single-j configuration
mixing. Here j is still an approximately good quantum number and one component
/ expansion coefficient will always be large. Consequently the expansion into shell
model orbits specified by their j values implies that the Nilsson wave function φi can
be written in the form [5]:

φi =
∑

j

Ci
jψ(j) (3.9)

Here ψ(j) are solutions to the spherical independent particle model and the Ci
j are

configuration mixing coefficients.
For large deformations (which means that δ = 0.6) it is appropriate to use the
analytically determined wave functions which are solutions to the anisotropic three
dimensional harmonic oscillator potential [28]. In the limit of large deformations
these solutions are exactly valid. In dealing with medium deformed nuclei with
δ ≈ 0.3 linear combinations of these wave functions have to be considered and nz is
only an approximately good quantum number.

φN
K =

∑

AN,nz
ψ(N, nz, K) (3.10)

However, even in this case one component of the linear combination is always much
larger than any of the rest indicating an almost pure state. In the up-coming calcu-
lations for the transitional matrix elements between the relevant states it is therefore
a reasonable approximation to work with the exact solutions for large deformations.

As already stated in the introduction the quadrupole residual interaction with its
operator r2Y2±2 is responsible for the gamma vibration in deformed nuclei. Certain
states have a non vanishing transition matrix element characterized by the following
selection rules:

∆N = 0,∆nz = 0,∆Σ = 0,∆K = ±2,∆Λ = ±2,∆π = +1 (3.11)
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In order to evaluate the transitional matrix elements between two Nilsson states
linked by the quadrupole interaction the single particle wave functions being solu-
tions to the three dimensional anisotropic harmonic oscillator are used.

H0 = −(~2/2m)∇′2 + 0.5m(ω2
rr

′2 + ω2
zz

′2)

H0ψ(N, nz,Λ,Σ) = EN,nz
ψ(N, nz,Λ,Σ)

(3.12)

r′ (radial coordinate) and z′ (position along the symmetry axis) are the coordinates
of the nucleon in a coordinate system fixed in the nucleus. The resulting wave
functions are given below in cylindrical coordinates ρ, φ and z with ρ ∼ r′ and
z ∼ z′. The oscillation frequencies in the radial direction and along the z direction
depend, as already derived, on the deformation β of the nucleus. One obtains the
following eigenvalues EN,nz

and eigenfunctions ψ(N, nz,Λ,Σ):

EN,nz
= ~ωr(N − nz + 1) + ~ωz(nz +

1

2
)

ψ(N, nz,Λ,Σ) = C−1 ·RN,Λ · ΦΛ · Znz

|〈ψ|ψ〉|2 = 1

(3.13)

Here, C is a constant for normalizing the wave function so that the probability to
find the nucleon somewhere in space is 1. The expressions for RN,Λ, ΦΛ and Znz

are

RN,Λ = exp(−0.5ρ2)ρ|Λ|(1 +
(|Λ| − nr)ρ

2

2(1 + |Λ|) +
(|Λ| − nr)(|Λ| − nr + 2)ρ4

8(1 + |Λ|)(2 + |Λ|) + ...),

ΦΛ = exp(iΛφ),

and Znz
= exp(−0.5z2)hnz

(z),
(3.14)

where hnz
(z) are the Hermite polynomials and nr = N − nz.

The quadrupole operator r2Y2±2 written in cylindrical coordinates has the following
form:

Ô ≡ r2Y2±2 =

(
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32π

)1/2

ρ2exp(±2iφ) (3.15)

Finally the desired matrix element between two Nilsson states m, i can be calculated
with the following integral:

〈m|r2Y2±2|i〉 = 〈ψ((N, nz,Λ,Σ)m)|r2Y2±2|ψ((N, nz,Λ,Σ)i)〉 =

=

∫ 2π

0

∫ +∞

0

∫ +∞

−∞

ψ((N, nz,Λ,Σ)m)∗ · Ô · ψ((N, nz,Λ,Σ)i) · ρ · dzdρdφ
(3.16)

Although it is reasonable to apply in the evaluation of the matrix elements the exact
solutions of the Nilsson wave functions for large deformations the admixture of other
wave function components near inflection points due to level-level repulsion in the
Nilsson diagram still has to be taken into account. For example, a total mixture in
the wave function of two states at an inflection point usually leads to a reduction of
the transitional matrix element by the factor of 0.5.
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In concluding this section it is worth remarking that the importance of the Nilsson
model arises from the fact that it provides a microscopic basis for the existence of
vibrational (and of course rotational) collective motion in deformed nuclei and thus
is a refinement to the spherical shell model. Single nucleon transfer reactions can
be used to determine the dominant states involved in a collective excitation of the
nucleus and are therefore an important possibility to confirm the predictions of the
deformed shell model [25, 26].

3.2 Pairing correlations

So far we have discussed the deformed shell model considering the nucleons as moving
independently in a deformed potential. Indeed this description does not contain all
necessary degrees of freedom. It is of major importance to incorporate a short range
residual interaction like the pairing force [5] in our calculation.
In fact, without pairing correlations, the ground state of a nucleus is of very simple
composition. The two-fold degenerate single-particle levels in the Nilsson diagram
at a certain deformation are simply filled up until the neutron / proton number of
the nucleus under consideration is reached. The highest occupied level for neutrons
/ protons denotes the neutron / proton Fermi energy. In the ground state all single-
particle states above this level are empty and consequently all states below the Fermi
level are occupied.
The elementary excitations in this case are particle-hole excitations. Considering
explicitly the gamma-vibration such transitions could happen between two Nilsson
states that are connected by the r2Y2±2 operator.
In the presence of pairing, however, the situation becomes more complicated. The
BCS theory [1] treats the pairing as a perturbation of the mean field Hamiltonian of
the nucleus. The final effect will be a modification of the former simple ground state
leading to a ”smearing” out of the Fermi surface and a new mechanism of excitation
in even-even nuclei called two-quasiparticle excitations.

The pairing force is an attractive force that occurs between identical nucleons in
the same j orbit. The interaction is such that the J = 0 configuration for the
two nucleons is much lower in energy than any other. In the Nilsson model the two
nucleons in the degenerate ±K levels are paired. Before discussing the consequences
of pairing correlations explicitly, it is worth to recall the experimental evidence which
supports the existence of pairing correlations in the nucleus and therefore proves the
essential importance to incorporate pairing into realistic calculations.

• The masses of even-even nuclei in comparison to their odd-mass neighbours
are much lower. This fact suggests that the gain in binding energy is much
larger when a nucleon is added to an an odd mass nucleus than when a nu-
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cleon is added to an even mass nucleus. In the context of pairing this can
be understood by the creation of a new pair of nucleons when an appropriate
particle is added to an odd mass nucleus and thus lowering its energy.

• The ground-state spin of all even-even nuclei is 0~. This fact suggests that
there is a force that acts to couple nucleons pairwise such that their angular
momenta cancel out.

• The energy of the first non-collective state is much higher (clearly above 1
MeV) in even-even nuclei than in odd mass nuclei. We will soon see that as a
direct consequence of pairing, in even-even nuclei there is an energy of twice
the so called pairing gap necessary to create a two-quasiparticle excitation.

• The ground state spin of odd-mass nuclei is determined by the spin of the last
nucleon which is unpaired.

• The measured moments of intertia of nuclei are much lower than the rigid-body
values. This fact suggests that the nucleus may behave like a ”superfluid”.

These effects observed in nuclei show similarities to superfluid 4He and supercon-
ductivity in some substances observed for temperatures near T = 0K. Nuclei behave
as if they consisted of a mixture of normal and superfluid liquid. The superfluid
component is probably related to the pairing force. Nuclei with opposite angular
momenta couple to J = 0 and such a system has a spherical symmetry and thus it
cannot contribute to rotational motion (remember the quantum mechanical restric-
tion commented upon in the introduction). In nuclear matter the paired nucleons
represent the superfluid component. The creation of pairs can be considered analo-
gously to the binding of electrons in Cooper pairs in superconductors accompanied
with an energy-gap for breaking up theses objects. Thus basically the same BCS
theory can be applied to both nuclei and superconductors.

In the ground state of an even-even nucleus all the nucleons are coupled pairwise.
Thus the total angular momentum is 0~. The strength of the pairing interaction
is larger for high j orbits and is dependent upon the spatial overlap of the two
nucleons. The strength parameter, denoted by G, therefore decreases with mass,
since in heavier nuclei the outer nucleons are further apart. The strength is also lower
for protons than for neutrons due to the effect of Coulomb repulsion. The strength
is usually given by Gp = 17

A
MeV for protons and by Gn = 23

A
MeV for neutrons.

Equation (3.17) gives the explicit formula describing the pairing interaction.

〈j1j2J |Vpair|j3j4J ′〉 = −G
(

j1 +
1

2

)1/2 (

j3 +
1

2

)1/2

δj1j2δj3j4δJ0δJ ′0 (3.17)

The pairing interaction not only couples pairs of nucleons in the same state j to
Jπ = 0+ (diagonal interaction), but also contains non diagonal elements connecting
different states j, j′. The effect of the non-diagonal matrix elements is that Jπ = 0+
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pairs of nucleons in an orbit j can be scattered into another orbit j′, as a pair,
still with Jπ = 0+. Far below the Fermi surface the Pauli principle forbids such
scattering to occur since the orbits above j are filled. By the way, this is how
it is possible to consider independent particle motion in such a dense object as
the nucleus. However, near the Fermi surface this scattering can occur between
orbits below and above the Fermi energy. The scattering results in a smearing out
of the Fermi surface. As already mentioned, in the absence of pairing the orbits
would simply be filled squentially in accordance with the Pauli principle until all
A nucleons had been placed in the lowest orbits and thus giving a sharply defined
Fermi surface. In figure 3.6 the effect of pairing on the Fermi surface is shown.
Altogether the pairing interaction leads, besides lowering the energy of the ground
state, also to a more complex ground state in even-even nuclei.

1
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P a i r i n g

Figure 3.6: Schematic representation of the smearing of the Fermi surface λ due to the
pairing interaction. The occupation probability V 2

i of certain single-particle
states i with an energy ǫi is shown. The effect of this interaction leads to
scattering of pairs of particles in an orbit j to another orbit j′. The scale
of the picture does not represent real proportions with λ ≈ 50MeV and
∆ ≈ 1MeV .

The probability that a state i is not occupied or that it is occupied by a coupled
pair of two nucleons is given by the expressions in equation (3.18) (emptiness and
fullness factors).

Ui =
1√
2

[

1 +
(ǫi − λ)

√

(ǫi − λ)2 + ∆2

]
1

2

; Vi =
1√
2

[

1 − (ǫi − λ)
√

(ǫi − λ)2 + ∆2

]
1

2

(3.18)

U2
i is the probability that the orbit i is empty and V 2

i is the probability that the orbit
i is occupied by a coupled pair of two nucleons. It can be seen that far below the
Fermi energy (ǫi << λ) V 2

i = 1 and far above the Fermi energy (ǫi >> λ) U2
i = 1.

Close to the Fermi energy the probabilities are mixed. ǫi is the single particle
energy of the two-fold degenerate Nilsson orbit, ∆ is the pairing gap paramter and
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λ is the (generalized) Fermi energy. The probabilities are of course normalised so
that U2

i + V 2
i = 1.

In a rough approximation the generalized Fermi energy λ equals to the Fermi energy
determined in a nucleus without taking the the pairing interaction into account. To
be precise, λ is defined as the energy at which the occupation probability is equal
to one half. However, for a nuclear system there is likely to be no state at such
a point. The pairing gap parameter ∆ denotes the area around the Fermi energy
where the occupation probability is significantly different from the extreme cases of
0 and 1, lying somewhere in between, smoothing out the level occupancies, as figure
3.6 shows. The generalized Fermi energy λ and the pairing gap parameter ∆ can be
determined exactly by solving the gap-equation under the condition of conservation
of the total number of particles, denoted by n. The single-particle energy levels at
a certain deformation have to be used as input data. The gap-equation and the
condition of conservation of the total particle number are written down in (3.19).

∆ =
G

2

∑

i

∆
√

(ǫi − λ)2 + ∆2

n =
∑

i

2V 2
i

(3.19)

Of course these equations have to be solved twice i.e. separately for neutrons and
protons. Most important are the single-particle states near the Fermi energy. Levels
far away from the Fermi energy become less decisive because their contribution to
the gap-equation decreases with their distance from λ. It is worth to emphasize
that the pairing gap parameter ∆ is proportional to G, the strength of the pairing
interaction.

Finally, it is necessary to talk about the new mechanism of producing elementary
excitations in nuclei when the pairing force is taken into account. The well-known
particle-hole excitations (refering to the excitement of a particle from a state below
the Fermi surface to an unoccupied state above the Fermi surface leaving a hole
behind - of course this only works between states that are connected by the r2Y2±2

operator in the case of a γ-vibration and thus leading to a nonvanishing transitional
matrix element between them) are replaced by the concept of two quasi-particle
excitations. Thus the single-particle energies are converted into a quasi-particle
energy spectrum [5].

In even-even nuclei (we will not discuss odd mass nuclei) there is no simple excitation
below the energy of 2∆. The simplest quasi-particle excitation1 consists of breaking
one pair of coupled nucleons and raising a particle to another orbit. Without pairing

1 Scattering of whole pairs from one single particle state to another is already incorporated in
the BCS ground state and is not considered to be a simple mode of excitation in even-even
nuclei. These excitations would only require about twice the difference in energy between two
single-particle states and thus their energy could be much lower than 2∆ in some cases. These
excitations are not observed experimentally.
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this is clearly a particle-hole excitation, but in the presence of pairing it appears as a
two-quasiparticle excitation: the one quasiparticle which is created is the hole that is
left behind and the other quasiparticle is the particle excitation newly created. The
total excitation energy Ex is given by the sum over the energies needed to create each
quasiparticle in a certain single-particle state i and j with the single-particle energy
ǫi and ǫj . The states that are occupied with these quasiparticles are not accessible
in the context of pair scattering processes anymore (this is called blocking).

Ex = Ei + Ej =
√

(ǫi − λ)2 + ∆2 +
√

(ǫj − λ)2 + ∆2 ≥ 2∆ (3.20)

Equation (3.20) shows that single-particle levels near the generalized Fermi surface
λ are energetically favoured. Furthermore the energy for a quasiparticle excitations
increases both for higher lying single particle orbits and for lower lying single-particle
states in the Nilsson diagram with respect to the Fermi level. If the state coincides
with the Fermi level, then the excitation energy of a quasiparticle is minimal, which
means Ei = 1∆. The effect of the pairing gap on the two-quasiparticle excitations
causes on the one hand simple two-quasiparticle excitations to appear at energies
higher than 2∆ and on the other hand in the region just above twice the pairing gap
there is a significant compression of the level density. A lot of states can be found
within a small range of the excitation energy.
Apart from the fundamental change in the energy structure of the nucleus, the
smearing out of the Fermi surface and thus the partially occupied states with nu-
cleon pairs around λ in the BCS ground state of the nucleus leads to a necessary
modification in the interaction matrix element introduced in the last subsection.
Mim = 〈m|r2Y2±2|i〉 is the shape of the former matrix element for a ground state
without pairing. The modified matrix element for a BCS ground state (incorporating
the pairing interaction) [5] is given in equation (3.21).

MBCS
im = (Vm · Ui + Um · Vi) · 〈m|r2Y2±2|i〉 (3.21)

Indeed, a two-quasiparticle excitation between two Nilsson states i and m which are
connected by the quadrupole operator can be realized in two different ways. One
possibility is to break a pair sitting in m and transfering one particle to the state i.
The other possibility is to break a pair located in the state i and shifting a nucleon
to the state m. From the energetical viewpoint these two options are equal.
Finally, it is also important to look at the BCS ground state with the smeared out
Fermi surface.
If the single-particle state m is far below the Fermi level and the single particle state
i is far above (or the other way round), then the quasiparticle excitation is clearly
a particle-hole excitation. Only one level is occupied with the pair of nucleons and
thus in this level the hole will be created and one nucleon is excited to the other
level which was not occupied by a pair so far - thus the particle is assigned to this
level.
If we consider two single-particle states that are located energetically within an area
of ∆ to both sides of the Fermi level then the situation becomes more complex.
It is not possible to distinguish in which level the hole / particle is created. This
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important fact shows that a quasi-particle is in general a mixture of a particle and
a hole. The modification of the transitonal matrix element (3.21) thus incorporates
both possibilities:
Vm is connected with the probability to find a pair of nucleons in the state m. In case
there is indeed such a pair, it can be broken and if the other level i is not occupied
by another pair of nucleons one particle from the broken pair can be moved to this
level. The probability that the level i is not occupied by a pair is connected with the
factor Ui. This implies that the transitional matrix element has to be modified with
a total factor Vm · Ui. Furthermore, exactly the same thought can be applied when
you exchange the level i with the level m. Therefore a transitional matrix element
modfied by the factor Um · Vi has to be added and finally formula (3.21) is derived
within the preceding simple argumentation.

The creation of a particle-hole state for a nucleus without pairing can be written
in the operator formalism as â†mâi with an energy of |ǫm − ǫi| acting on the ground
state |0〉. Consequently the destruction of this state is given by âmâ

†
i . For a two-

quasiparticle excitation the creation operator acting on a BCS ground state |BCS〉
can be written as α̂†

mα̂
†
i with an excitation energy of Em +Ei and the corresponding

destruction operator is α̂mα̂i.
The introduction of the quasiparticles is altogether a very elegant concept so that it
is possible to consider the nucleus after the incorporation of the pairing force again
as a system of independent particles. The complexity is absorbed in the ground state
and in the ”new” method of creating elementary excitations in such a nucleus. The
single-particle energy spectrum is replaced by the quasi-particle energy spectrum
E =

√

(ǫ− λ)2 + ∆2.

In the next section of the current chapter we will show that it is indeed possible
to have more complex - not ”elementary”, but collective excitations of even-even
nuclei that occur below twice the energy of the pairing gap. They correspond to
macroscopic collective vibrations (or rotations) of the nucleus as a whole and can
be considered as resulting from the correlation of several two-quasi-particle states.
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3.3 Theory of the Random Phase Approximation

The tremendous success of applying the Random Phase Approximation2 (RPA) [1,
9-11] in nuclear physics results from the fact that this method is able to describe
collective behaviour (e.g. the gamma-vibration) from the underlying microscopic
physics, i.e. from the deformed shell model. This theory is in principle capable of
explaining the low energy of the gamma-vibrational state (which is often far below
2∆, the limit imposed by the pairing force). Furthermore it describes the composi-
tion of the collective wave function and of course transition probabilities from the
excited state to the ground state can also be calculated.
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Figure 3.7: Comparison between TDA and RPA, with and without pairing

2 The name ”Random-Phase-Approximation” refers to an approximation which was used in the
original derivation of this method.
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The underlying idea of the RPA is very simple and will here be outlined in the con-
text of the gamma-vibrational state. The collective vibrational state is assumend
to be composed of a coherent linear combination of several particle-hole (in the
context of pairing: two quasi-particle) excitations between states connected by the
quadrupole residual interaction (the final wave function is a superposition of these
fundamental modes of excitation).
There is also another treatment similar to the RPA called the TDA (Tamm-Dancoff-
Approximation) which will be discussed additionally in the following derivation of
the RPA. The difference between these two methods is the ground state which the
nucleus is assumed to have before the collective vibrational state is excited.
In the TDA the ground state is very simple, which means that basically for the nu-
cleus without pairing all states up to the Fermi level are filled and all states above
the Fermi level are empty. Incorporating pairing we find analogously the unaltered
BCS ground state with the smeared out occupation of pairs around the Fermi sur-
face (figure 3.7). Consequently the TDA only involves amplitudes for the creation
of elementary excitations to describe the collective vibrational state.
In contrast to the TDA, the RPA intends to make the ground state of the nucleus
more complex. Remember that the residual quadrupole interaction connects certain
Nilsson model states by the operator r2Y2±2. Thus the RPA assumes that already in
the ground state there may be some particle-hole or two quasi-particle excitations
between states connected by the quadrupole residual interaction. These ground
state correlations (or built-in excitations) lead to a far more realistic picture of the
physics of the nucleus (figure 3.7).
The consequence will be that the creation of the vibrational collective state in the
RPA not only involves amplitudes for the creation of elementary excitations but also
(usually much smaller) amplitudes for the destruction of those.
TDA and RPA both lead to a significant lowering of the energy of the vibrational
state in comparison to the energy needed to create elementary excitations of the
particle-hole / two quasiparticle type. The only difference is that the RPA approach
leads to greater collectivity than the TDA approach. Thus the refinement of incorpo-
rating ground state correlations yields much higher reduced transition probabilities
from the collective state to the ground state.

First of all, for simplicity, we will only work with simple particle-hole excitations
and finally the important step to the incorporation of quasi-particles and the pairing
force can be done by simply switching to quasi-particle energies and changing the
transitional matrix elements according to the BCS ground state with partial occu-
pancies near the Fermi surface as shown in the last section.
Before we will start with the derivation of the RPA following the arguments given
in the textbook of Greiner [1], it is already reasonable to list the ingredients needed
for a RPA calculation applied to a nucleus:

• Setting up of a model space: usually the model space consists of all single-
particle levels connected by the r2Y2±2 interaction in a reasonable distance
from the Fermi surface. As will be shown soon, the contribution of states far
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away from the Fermi surface becomes very small.
In the end we have a set of single-particle energies (taken from the Nilsson
diagram at a certain ground state deformation β0) and transitional matrix
elements between them.

• If pairing is incroporated it is necessary to determine the generalized Fermi
energies separately for neutrons and protons and the corresponding pairing
gaps.

• A realistic assumption about the strength κ of the quadrupole interaction is
required. Of course it is also possible, as we will see later, to take the exper-
imental energies of the γ-vibrational state and determine the corresponding
strength paramter.
Unfortunately this paramter is not a priori fixed within the framework of RPA.

It seems to be reasonable to start from a nuclear Hamiltonian H = T + VNN where
VNN is a realistic nucleon-nucleon interaction potential. Unfortunately the nucleon-
nucleon potential VNN is not suitable for direct use in the TDA or RPA because
it usually has a strong repulsive core at small distances. So the first step is to
transform H = T + VNN into some effective Hamiltonian (3.22).

Heff = H0 + V =
∑

k1k2

tk1k2
a†k1

ak2
+

1

2

∑

k1k2k3k4

νk1k2k3k4
a†k1

a†k2
ak4
ak3 (3.22)

H0 is the effective one-body Hamiltonian and V is assumed to be an effective two-
body interaction3. The model space in which TDA and RPA calculations are usually
performed is composed of all the Nilsson single-particle states within a certain dis-
tance from the Fermi level in a given nucleus. The collective gamma-vibrational
state |c〉 solves the Schrödinger-Equation

H|c〉 = Ec|c〉 (3.23)

and an operator can be defined, which acts on the ground state, creating the col-
lective state as shown in (3.24). This operator creates a vibrational quantum and
is therefore called phonon creation operator. The adjoint operator represents the
corresponding annihilation of the excited collective state.

O†
c|0〉 = |c〉 ; Oc|0〉 = 0 ; Oc|c〉 = |0〉 (3.24)

An approximation for the creation operator is based on a principle of variations.

0 = δ〈c|H −Ec|c〉 = δ〈0|OcHO
†
c −EcOcO

†
c|0〉 (3.25)

3 The Hamiltonian can also be split up into a part H0 incorporating the kinetic term and an average
attractive potential V for each nucleon plus the potential Vresidual. The difference between VNN

and the potential V gives the residual interaction Vresidual that can not be included in the
average potential. In fact the whole treatment of the nucleus in the Nilsson model plus resdiual
interactions is based on this separation.
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The operator O†
c and the adjoint operator Oc can be varied independently from each

other and the energy of the ground state is denoted by E0. After using the obvious
commutation relation HO†

c|0〉 =
[

H,O†
c

]

|0〉 + E0O
†
c|0〉 and the properties of the

introduced operators, the following fomula (3.26) can be easily derived.

〈0|
[

δOc,
[

H,O†
c

]]

|0〉 = (Ec −E0) · 〈0|
[

δOc, O
†
c

]

|0〉 (3.26)

As already mentioned one big advantage in the use of the RPA instead of the TDA
is the fact that the ground state itself may already contain excitations due to some
residual interaction.
The ground state |0〉 without pairing in the TDA consists simply of occupied levels
below and empty levels above the Fermi surface. Applying the more realistic RPA
then the ground state |0〉 has already some built in correlations i.e. particle-hole
excitations, as already mentioned (figure 3.7).
Therefore excited states are constructed by the use of usual particle-hole creation
operators a†mai and in addition by the use of operators which remove particle-hole
excitations a†iam from the ground state. In the TDA the a†iam contribution is can-
celed (there are no ground-state correlations that can be removed).
The single particle energy of states denoted by m, n shall be above the Fermi surface
and the energy of states i, j shall be below the Fermi level. This restriction is not
necessary if the pairing force and thus quasi-particle energies are considered.
If the pairing force is taken into account the ground state |0〉 in the TDA is the
BCS ground-state with a smeared out Fermi surface. Using the more complicated
RPA in this case leads to a ground state |0〉 which has already some built in two
quasi-particle excitations (figure 3.7).
Applying the RPA, the two quasi-particle creation α†

iα
†
j and destruction αiαj oper-

ators have to be used to form the collective state. Analogously in the TDA the αiαj

contribution is canceled.
Thus the operator for the creation of the collective state (in the RPA but without
pairing) finally has the following form.

O†
c =

∑

m,i

(

xc
mia

†
mai − yc

mia
†
iam

)

(3.27)

In equation (3.27) the coefficients/amplitudes xc
mi and yc

mi are real numbers. Ap-
plying the principle of variations to the operator (3.27) means either to vary the
coefficients xc

mi or to vary the coefficients yc
mi. This yields, in connection with the

formula (3.26) just derived above, two equations whose commutators have to be eval-
uated in the RPA ground state. Assuming that only a few particles are lifted above
the Fermi energy and consequently only a few holes exist below the Fermi level due
to the residual quadrupole interaction the so called quasi− boson− approximation
is applied. It permits to evaluate the commutators as if the ground state contained
no built in excitations. This is equivalent to the interpretation that the particle-hole
creation operators behave as if they satisfied boson commutation relations.
The application of the schematic model (being based on a rank-one separability ap-
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proximation for the interacting potential matrix elements ν̄mnij = κ · 〈m|r2Y2±2|i〉 ·
〈n|r2Y2±2|j〉) leads to the final form of the RPA equations.

I)
∑

nj

(

Ami,njx
c
nj +Bmi,njy

c
nj

)

= (Ec − E0) · xc
mi

II)
∑

nj

(

B∗
mi,njx

c
nj + A∗

mi,njy
c
nj

)

= − (Ec − E0) · yc
mi

(3.28)

Ami,nj = (ǫm − ǫi) · δmn · δij + κ · 〈m|r2Y2±2|i〉 · 〈n|r2Y2±2|j〉
Bmi,nj = κ · 〈m|r2Y2±2|i〉 · 〈n|r2Y2±2|j〉

(3.29)

The simpler TDA in the case of particle-hole excitations (i.e. without pairing) is also
described by the equations (3.28) and (3.29) if equation II) is removed and yc

nj is set
equal to zero (no ground-state correlations or vacuum fluctuations). In the TDA the
operator exciting the collective state has the following shape O†

c =
∑

m,i x
c
mia

†
mai.

The solution of equation I) for the TDA is similar to the up-coming procedure in
the RPA and will not be treated in the present work.
The further assumption that the interaction matrices contain real numbers and are
symmetric is a reasonable refinement. κ is the paramter which classifies the strength
of the residual quadrupole r2Y2±2 interaction. For an attractive interaction the sign
is negative. Unfortunately this strength parameter is a free parameter in the RPA
and TDA respectively.
The pairing residual interaction is completely incorporated by applying the following
modifications [5]:

• The RPA ground state |0〉 is built upon the BCS ground state

• ǫm − ǫi → Em + Ei with the quasi-particle energy Ek =
√

(ǫk − λ)2 + ∆2

• For the transitional matrix element between Nilsson states:
〈m|r2Y2±2|i〉 → (Vm · Ui + Um · Vi) · 〈m|r2Y2±2|i〉

U2
m and V 2

i are the well known BCS emptiness and fullness factors due to pair
scattering describing the probability that a certain state is occupied by a pair of
nucleons or not. For states far above or below the Fermi energy it is obvious that
the pairing interaction has no effect. In this case the expression for the matrix
element is not changed.
Turning again to the RPA equations I) and II) a solution for the unknown coefficients
xc

mi and yc
mi can be found after recognizing that the same sum S appears in both

equations.

S =
∑

nj

(

(UnVj + UjVn) · 〈n|r2Y2±2|j〉 · xc
nj + (UnVj + UjVn) · 〈n|r2Y2±2|j〉 · yc

nj

)

(3.30)
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xc
mi =

κ · S · (UmVi + UiVm) · 〈m|r2Y2±2|i〉
(Ec − E0) − (Em + Ei)

yc
mi =

−κ · S · (UmVi + UiVm) · 〈m|r2Y2±2|i〉
(Ec − E0) + (Em + Ei)

(3.31)

E0 can be set equal to zero because it is possible to make an arbitrary choice for
the energy of the ground state. The coefficients (3.31) are the amplitudes of the two
quasi-particle states making up the collective vibrational wave function.

The combination of the Nilsson single-particle states m, i connected by the quadrupole
residual interaction can be considered as basis states. Due to the existence of the
residual interaction these states are not eigenstates of the Hamilton operator, but
they can be used as a basis for the preceding procedure of variational calculus.
The coefficients of course fulfil the normalisation condition and thus are normalised
to 1 (3.32). The xmi are called the forward amplitudes, because they describe the
creation of a particle-hole (or two quasi-particle) excitation. The ymi are called the
backward amplitudes describing the destruction of an elementary excitation.

∑

mi

(

|xc
mi|2 − |yc

mi|2
)

≡
∑

mi

Cmi = 1

with pairing: |c〉 =
∑

mi

(

xmiα
†
mα

†
i |0〉 − ymiαmαi|0〉

) (3.32)

In general the collective correlated wave function consists of a sum of almost equal
amplitudes for all particle-hole / two quasi-particle excitations with all amplitudes
in phase i.e. contributing with the same sign.
Finally, the Cmi, defined in (3.32), show the contribution of the basis states in the
collective vibrational state. Said in other words the Cmi represent the fraction of the
collective vibrational wave function a certain combination of Nilsson states carries.

Substituting the solutions for the amplitudes into the definition of the sum S the
result is an equation (3.33) which is suitable for calculating the energy of the col-
lective gamma vibrational state.
From the several solutions of the equation one just has to take the solution with the
lowest energy. The energy value Ec ≡ Eγ corresponding to the collective vibrational
state is indeed appearing significantly lowered in energy for an attractive interaction
in comparison to the other solutions of the equation.

−1/κ =
∑

mi

− (UmVi + UiVm)2 · |〈n|r2Y2±2|j〉|2 · (Em + Ei)

(Ec −E0)
2 − (Em + Ei)

2 (3.33)

Equation (3.33), the so-called dispersion relation, is solved graphically to find the
collective solution Ec. This is shown in figure 3.8. It is seen that all solutions except
one lie between the unperturbed energies. If the interaction is sufficiently strong
(1/κ small), the lowest solution is pushed farther away than the others from the
corresponding unperturbed energy and thus representing the collective state. For
a sufficiently strong quadrupole force (κ large and negative) there may be no real
solution of the RPA equations.
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Figure 3.8: This illustration shows the so-called dipersion relation (equation (3.33)) in
the RPA. The energies ǫ∗x denote particle-hole states with ǫ∗x = ǫm − ǫi and
if pairing is incorporated two quasi-particle states with ǫ∗x = Em + Ei. For
an attractive interaction 1/κ < 0 the collective solution Ec is pushed down
below the unperturbed energies. If the quadrupole interaction is too strong,
then there might be no real solution for the energy Ec of the collective state.

Finally, it is an interesting point to calculate the reduced transition probability
from the collective state to the ground state via the operator E2 corresponding to
an electromagnetic quadrupole transition. The following equations listed in (3.34)
show the principal way this calculation works [5, 10]. |0〉 denotes the correlated
ground state (vacuum) and |c〉 denotes the collective gamma-vibrational state.

no pairing: |c〉 =
∑

mi

(

xc
mia

†
mai|0〉 − yc

mia
†
iam|0〉

)

≡
∑

mi

(

xc
mi|im〉 − yc

mi|im−1〉
)

transition amplitude: 〈c|E2|0〉 =
∑

mi

(

xc
mi · 〈im|E2|0〉 + yc

mi · 〈im−1|E2|0〉
)

=

=
∑

mi

(xc
mi · 〈m|E2|i〉 + yc

mi · 〈i|E2|m〉)

transition probability: B(E2) ∝ |〈c|E2|0〉|2 =

= |
∑

mi

(xc
mi · 〈m|E2|i〉 + yc

mi · 〈i|E2|m〉) |2

(3.34)
We will continue the discussion of the calculation of electromagnetic reduced tran-
sition probabilties at the beginning of the next chapter.

In the last part of this section we emphasize explicitly the important equations
in the RPA determining the collective wave function in the case of pairing and
discuss which components may be dominant depending on their location in the
Nilsson diagram [5]. The BCS ground state including vacuum fluctuations is now
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denoted explicitly by |RPA〉. Furthermore the operators create and destroy two
quasi-particle excitations.

|c〉 =
∑

mi

(

xmiα
†
mα

†
i |RPA〉 − ymiαmαi|RPA〉

)

∑

mi

Cmi =
∑

mi

(

|xmi|2 − |ymi|2
)

= 1

Cπ,ν
mi ∝

∣

∣〈m|r2Y2±2|i〉
∣

∣

2 · (UmVi + UiVm)2 ·
·
[

(Eγ − (Em + Ei))
−2 − (Eγ + (Em + Ei))

−2]

(3.35)

In formula (3.35) we distinguish the neutron and proton contribution denoted by π
and ν, respectively.
It can be easily seen that the forward amplitudes xmi (- in the denominator) usually
are the dominant contributions and the backward amplitudes ymi (+ in the denom-
inator) are rather small. Therefore the importance, denoted by Cmi, of the Nilsson
states connected by the quadrupole operator in the vibrational wave function mainly
depends on the forward amplitudes.
However, in the next subsection it will be shown that the ”small” backward ampli-
tudes are an essential ingredient to obtain high reduced transition probabilities and
thus they are by no means negligible.
Assuming a pairing gap of about 0.8MeV and an energy of the gamma-vibrational
state of about 1.0MeV , which is a typical value for the nuclei under consideration,
the Cmi are large if the two states are located as close as possible to the generalized
Fermi energy which means that the excitation energy of two quasi-particle excita-
tions between these states is near its minimum value of twice the pairing gap. For
states away from the Fermi level the participation in the collective wave function
decreases rapidly with the distance.
Furthermore, the contribution is proportional to the value of the transitional matrix
element. The part consisting of emptiness and fullness factors clearly prefers two
single-particle Nilsson states lying symmetrical on opposite sides of the generalized
Fermi level. This means that the occupation probability of the one Nilsson orbit
has to correspond to the non-occupation probability of the other orbit and the other
way round, respectively.
In this work istopic chains of nuclei are considered. It is obvious that the distrbution
of the Cmi for the proton states will hardly change. The constant proton number
implies an almost constant proton Fermi surface. For the neutrons the Fermi level
mainly changes due to the different neutron number of the nuclei lying on the iso-
topic chain. The distribution of the contribution of the neutron states does not
change rapidly but changes occur rather smoothly with the neutron number.
The energy of the gamma-vibration generally decreases with the number of con-
tributing orbits. Therefore nuclei with semi filled shells, which implies Fermi levels
lying in a very dense region of the Nilsson diagram with a lot of Nilsson states close
together, have on average lower energies of the gamma-vibration in comparison to
nuclei far from midshell.
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3.3.1 Explicit comparison between TDA and RPA for de-
generate single-particle states

It is fruitful to compare the Tamm-Dancoff-Approximation and the more realistic
Random-Phase-Approximation which incorporates ground state correlations for de-
generate single-particle states (for simplicity we neglect pairing here) with a single-
particle energy difference (and thus excitation energy) of ǫ ≡ ǫm − ǫi.

If pairing is negelected the collective state in the TDA has an energy of Ec =
ǫ+ κ

∑

mi |〈m|r2Y2±2|i〉|2. If the interaction is attractive (κ < 0) the collective state
decreases in energy with the number of contributing states as long as their matrix
elements are approximately equal. The transition probability from the excited col-
lective state to the ground state is given by |〈c|E2|0〉|2 =

∑

mi |〈m|E2|i〉|2. It is just
the sum of the transition probabilities for all unperturbed states.
One can summarize the results as follows: For degenerate unperturbed particle-hole
energies, a single collective state is produced and pushed away from its unperturbed
energy by the sum of all particle-hole matrix elements and carries all the transition
strength. This is just a quantitative statement of the fact that all the particle-hole
configurations connected by the transitional matrix elements contribute coherently
to the collective vibrational state.
The same investigation in the context of the RPA with equal assumptions and
also degenerate input single-particle states delivers for the energy of the collec-
tive state E2

c = ǫ2 + 2ǫκ
∑

mi |〈m|r2Y2±2|i〉|2. The collective RPA solution is al-
ways lower in energy than the collective TDA solution (κ < 0): E2

c (RPA) =
E2

c (TDA) − κ2 (
∑

mi |〈m|r2Y2±2|i〉|2)2
. The energy shift is larger the stronger the

interaction is. The difference between TDA and RPA also shows up in the transition
probability form the excited collective state to the ground state via the E2 operator.
The transition probability in the RPA is given by |〈c|E2|0〉|2 = ǫ

Ec
(
∑

mi |〈m|E2|i〉|2).
The transition probability in the RPA turns out to be energy dependent in contrast
to what was the case for the TDA. Thus for a sufficiently attractive quadrupole
force (and consequently Ec << ǫ) the transition probability may considerably ex-
ceed the TDA value. The difference in magnitude of the RPA and TDA transition
probabilities is due to the presence of ground-state correlations in the RPA. In fact
the assumption that already in the ground state elementary particle-hole excitations
induced by the quadrupole force are present is very important to be able to repro-
duce the high experimentally observerd reduced transition probabilities for collective
states.
Although the degenerate case is clearly an idealization, it serves to illustrate the
mechanism behind collective, coherent states.
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3.4 The Interacting Boson Approximation (IBA)

It was already mentioned that the IBA is an algebraic model capable of describing
low-lying collective states in deformed nuclei. The simplest version of the interacting
boson model (Ref. [13, 15]), referred to as IBM-1 or IBA-1 (Interacting Boson
Approximation and Interacting Boson Model mean the same), is defined as a system
of N bosons, each of which may have angular momentum 0 or 2 (called s or d bosons)
and which interact with one-body and two-body interactions. This simple model
does not distinguish between neutrons and protons. For a given nucleus the number
of N bosons is fixed by the number of nucleons in the valence shell of the nucleus
(for protons and neutrons the boson number is separately counted to the nearest
closed shell which means that past midshell holes are counted). The lower lying
closed shells are neglected.
In the shell model the consideration of all possible couplings of the valence nucleons
spread over the various states in the valence shell, yielding for example a 2+ state, is
an intractable enterprise. Indeed the number of possible combinations for nuclei with
a few fermions off a closed shell rapidly rises to about 1014-1018. This is a tremendous
problem in the shell model. The approach of the IBA, having the pairing interaction
in mind, and thus forming two different kinds of bosons constructed of couples of
valence shell nucleons, is a vast simplification and reduces the possibilities to form a
2+ state dramatically. The number of bosons is fixed for a certain nucleus and thus
the results are boson number dependent.
The ground-state in this model, corresponding to the lowest 0+ state, consists only
of s bosons. The energy of the s bosons is set to zero. Excited states are produced by
the annihilation of s bosons and the creation of d bosons, thus conserving the total
boson number. Furthermore the bosons interact with each other. The Hamiltonian
is expressed by using the boson creation operators s†, d† and the boson annihilation
operators s, d up to second order. The IBA basis states, making up the low-lying
excited collective positive parity nuclear levels, can be denoted by the following set
of quantum numbers:

|nd, σ, τ, J
π〉

In this expression nd is the number of d bosons, σ is the number of d bosons coupled
pairwise to J = 0, similarly τ denotes the number of d bosons coupled triplewise to
J = 0 and finally Jπ is the total angular momentum and parity resulting from the
coupling of all the d bosons.
A fundamental feature of the IBA is its group theoretical structure. Since an s
boson (J = 0) has only one magnetic substate and a d boson (J = 2) has five, the
s-d boson system can be looked at mathematically as a six dimensional space. Such
a system can be described in terms of the algebraic group structure U(6). There
are various subgroups of U(6) leading to different dynamical symmetries. Three of
these symmetries are physically interesting (U(5),O(6) and SU(3)), figure 3.9. Each
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has specific characteristic properties and a geometric analogue as already mentioned
in the introduction. The U(5) symmetry corresponds to the limit of the spherical
vibrator in the geometric collective model. For a deformed nucleus the two IBA
symmetries SU(3) and O(6) are equivalent to the deformed axially symmetric rotor
and the gamma-unstable deformed rotor in the GCM, respectively.

Figure 3.9: Illustration of the three dynamical symmetries in the IBA symmetry triangle.
In the Extended Consistent Q Formalism the three symmetries are expressed
by the following Hamiltonian parameters: U(5) corresponds to any χ and
ζ = 0, SU(3) corresponds to χ = −

√
7/2, ζ = 1 and O(6) corresponds to

χ = 0, ζ = 1.

A very useful simplified version of the Hamiltonian of the IBA-1 written in the
Extended Consitent Q Formlism (ECQF) (Ref. [14]) has the following shape.

H(ζ, χ) = c ·
[

(1 − ζ)n̂d −
ζ

4n
Q̂χ · Q̂χ

]

with Q̂χ = (s†d+ d†s) + χ(d†d)(2)

(3.36)

ζ (0 ≤ ζ ≤ 1) and χ (−
√

(7)/2 ≤ χ ≤ 0) are the two free parameters of the
simplified Hamiltonian. In the paper of McCutchan et al. [16] it was shown that a
reasonable treatment of rare-earth nuclei can be achieved within this simple frame-
work. Here c is an arbitrary scaling factor of the energies. Usually, when fits to
experimental data are done, c is determined so that the calculated energy of the 2+

state of the ground-state band matches with the experimental value. n̂d = d†d is
the d boson particle number operator and Q̂χ is the quadrupole operator. The same
quadrupole operator is used in the Hamiltonian and the E2 operator, which is given
by T (E2) = eBQ, where eB is a free parameter, called the effective boson charge,
which is used as a scaling factor for the reduced quadrupole transition probabilities.
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In the limit U(5), corresponding to the spherical vibrator, with ζ = 0 and an ar-
bitrary χ, only the boson number operator in the Hamiltonian is left leading to an
equally spaced energy spectrum as expected for a vibrator with multiple phonon
excitations. In the two deformed limits only the quadrupole operator contributes
(ζ = 1). This operator mixes different basis states with quantum number nd. In
the O(6) limit corresponding to a gamma-unstable deformed rotor with ζ = 1 and
χ = 0 the quadrupole operator creates an s boson and destroys a d boson or it cre-
ates a d boson and destroys an s boson instead. In the SU(3) limit of the deformed
axially symmetric rotor with ζ = 1 and χ = −

√
7/2 a maximum contribution of the

term, which destroys a d boson somewhere and creates another d boson, is present
in addition to the interaction in case of the O(6) limit. The parameter χ determines
the relative strength of the s†d+ d†s and (d†d)(2) parts of the quadrupole operator.

It is possible to map the IBA parameters into the symmtery triangle (figure 3.9) by a
simple formula. This mapping converts the parameters ζ and χ in the Hamiltonian
into radial and angular coordinates ρ and θ.

ρ =

√
3ζ√

3cosθχ − sinθχ

θ =
π

3
+ θχ

θχ = (2/
√

7) · χ · π
3

(3.37)

These coordinates allow for a simple and convenient description of the entire IBA
symmtery triangle, with θ ranging from 0◦ to 60◦ and ρ acting as a standard radial
coordinate from 0 to 1. The polar coordinates are defined in the following way: ρ is
the distance from the U(5) limit to the point under consideration inside the triangle
and θ denotes the angle between the U(5)-SU(3) leg and the distance vector.
Equation (3.37) was used in Ref. [16, 17] to map the IBA fits for the rare earth
nuclei into the triangle, as shown in figure 1.1.



Chapter 4

Application to the γ-vibration in
well-deformed even-even rare
earth nuclei

The theoretical model discussed in the previous chapter is applied to several well-
deformed even-even rare-earth nuclei. Before presenting the results it is necessary to
go into details concerning the origin of the various input parameters that are used
and to discuss the simplifications applied in our calculations. Restrictions arising
from the simplified treatment will be emphasized. In the last section of this chapter
an explicit comparison of our results with previous calculations for some of the
nuclei considered here in the so called Quasiparticle-Phonon Nuclear model [21-23]
by Soloviev et al. is shown to support the reliability of our results.

4.1 Input parameters and simplifications applied

in our calculations

Our microscopical treatment of the gamma-vibrational state is based on the Nilsson
model (deformed shell model). Thus we use the Nilsson diagrams for neutrons and
protons taken from the Nuclear Data sheets [33] due to the lack of an available
Nilsson shell model code. These diagrams show the energy of the single-particle
Nilsson states as a function of the ground state quadrupole deformation parameter
β0 / δ0. The appropriate quadrupole deformation of the various nuclei was looked
up at the Website of the National Nuclear Data Center [34] and taken from the
Raman compilation [29], respectively. Of course the energy eigenvalues taken from
the diagrams are afflicted with minor errors due to the modest reading accuracy and
possible inaccuracies in the ground state deformation parameter.

42
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For the wave functions used to calculate the interaction matrix elements between
certain Nilsson states it is a good approximation to take the exact solutions in the
case of large deformations. For medium deformation parameters a linear combina-
tion of several of these wave functions should be considered, but fortunately one
component is always highly dominant justifying our approximation. Solely for the
transitional Pt isotopes with a deformation paramter β0 close to 0.1 the results of
our calculation obtained within the simplification of pure wave functions should be
handled with care.
Furthermore, the mixtures of Nilsson states with the same exact quantum numbers
Kπ were only roughly taken into consideration i.e. either no mixture of two states
is assumed or a complete mixture of two states in the area close to the point in
the Nilsson diagram where the energy levels of these two states would have crossed
(inflection point).
In the previous chapter it was shown that the amplitude of a two quasi-particle
excitation is most likely to be important in the entire wave function if the single
particle energies of the two Nilsson states which are involved are as close as possi-
ble to the Fermi energy. Moreover the states should be placed symmetrical to the
Fermi level (one above, one below). To get an idea which states could be impor-
tant we determined the Fermi level in a first order approximation by successively
filling the Nilsson states according to the Pauli principle until the neutron / proton
number of the nucleus under consideration was reached. Besides we also looked at
the paper by Bès et al. [20] and used the results as a guideline. Bès et al. have
done calculations concerning the gamma-vibrational wave function in some nuclei of
the rare-earth region and written down all components with a contribution greater
than 0.5 percent to the entire collective wave function (usually about 20 states for
protons and neutrons together). The many small components that were not given
explicitly represent a constant fraction of about ten percent of the collective wave
function. Indeed in our calculations these components are beyond the scope, but
it is important that their entire contribution to the wave function is approximately
constant for the whole rare-earth region.
We only concentrate on the structural evolution of the major components of the
wave function along an isotpic chain and compare this behaviour for various nuclei.
It would be a tedious task to incorporate all these small amplitudes by manually
extracting the information for so many single-particle levels from the Nilsson dia-
gram.
This is also the reason why the generalized Fermi energy used in the BCS theory
in our calculations was approximated by the Fermi energy determined by the high-
est occupied level in the Nilsson model neglecting pairing correlations. Indeed in
some cases this first order approximation was altered a little bit by solving the Gap-
equation under the condition of particle number conservation, but only the levels
lying close to the expected Fermi surface were taken into consideration for this re-
finement. For a precise result a lot more single-particle energy levels would have to
be incorporated exeeding the frame of this diploma thesis.
The pairing gaps for the neutrons and the protons were calculated by comparison
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of the experimental nucleon separation energies (taken from the National Nuclear
Data center) in adjacent nuclei using the following formula.

for neutrons: ∆N,Z =
1

4
(2 · Sn (N,Z) − Sn (N + 1, Z) − Sn (N − 1, Z))

for protons: ∆N,Z =
1

4
(2 · Sp (N,Z) − Sp (N,Z + 1) − Sp (N,Z − 1))

(4.1)

Finally the applied simplifications can be justified by the fact that a qualitative com-
parison between the results for the amplitudes of the two quasi-particle excitations
obtained in our model for the rare-earth nuclei and the amplitudes published in the
paper by Bès et al. show a good agreement. In this context the reader is refered
to the last section of this chapter where an explicit comparision of our results with
previous calculations for some of the nuclei of interest is shown.

In the present work the energies for the gamma-vibrational state were not calculated
using the dispersion relation (3.33) introduced in the RPA section of the last chapter.
Instead the experimental values of the energy (also taken from the National Nuclear
Data center) were used to obtain the desired amplitudes of the orbital combinations
involved in the collective wave function.
There are two main reasons for proceeding like this:
First, a correct result for the vibrational energy can only be calculated if the many
small components which make up a tenth of the collective wave function (accord-
ing to Bès et al.) are also well known. The dispersion relation has to be solved
graphically and the lowest solution determining the energy of the collective state
is very sensitive to small variations in the contributing states even if they are very
small. This is due to the nearly horizontal course (for higher collective energies
rather prabolic than horizontal) of the right hand side of equation (3.33) and the
problem arising when the intersection with the left hand side, determined by the
strength paramter κ, has to be found. A small upward shift of the right hand side
caused by some small components could lead to a significant lowering in the collec-
tive gamma-vibrational energy.
Second, we do not have a model that tells us something about the strength param-
eter κ of the quadrupole interaction. In our RPA derivation this is a free paramter.
Of course another unsatisfying possibility would be to feed the equation with ex-
perimental energies of the gamma-vibrational states and calculate κ separately for
each nucleus. After that a mean value of the paramter κ for all nuclei could be
derived. Finally reapplying this mean value to the dispersion relation some pseudo
theoretical values of the energy of the gamma-vibrational state would result. Of
course this procedure would only make at best a limited sense if at least the many
small components were exactly known and taken into consideration.

In our simple model it is also not possible to determine reduced electromagnetic
transition probabilities. According to equation (3.34) in the last chapter the cal-
culation of the B(E2) value for the transition from the excited gamma-vibrational
state to the BCS ground state could be done theoretically in the following way: the
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corresponding entire amplitude is composed of a sum over the amplitudes of all the
single-particle E2 transitions each weighed by the amplitude Xmi and Ymi of the
corresponding two Nilsson states in the collective vibrational state. The phases of
the amplitudes all have the same sign in the collective state which is a compostion
consisting of a coherent superposition of single-particle excitations. To get finally
the transition probability the entire amplitude has to be squared.
The problem with our model arises again from the many small components of the
wave function. Their contribution in comparison to the contribution of the large
components of the wave function can easily be of the same magnitude making a cal-
culation only involving the major components of the wave function absurd. For re-
duced transition probabilities the detailed structure of the vibrational wave function
down to the smallest components is of major importance. Furthermore according to
the paper of Bès et al. a theory which is dedicated to deliver realistic B(E2) values
should incorporate the Coriolis interaction (mixing states with ∆K = ±1) in any
case. In our work only the interaction based on the r2Y2±2 operator was taken into
account.
Although the model was applied to the well deformed rare earth nuclei with R4/2 >
2.9, this selection includes some nuclei near the phase/-shape transition region from
spherical to deformed: 152Sm, 154Gd, 156Dy and 162Y b. The results for those nuclei
should be taken with some caution, since large fluctuations in the deformation pa-
rameter β are to be expected, making the assignment of two quasi-particle structure
of the involved states unreliable. However, these results are helpful in following the
trends for the isotopic chain.

To summarize the previous discussion one can say that our model is suitable to
reproduce the qualitative behaviour of the distribution of the major amplitudes for
the gamma vibrational state along an istopic chain, although the absolute values of
the amplitudes should be handled with some care.
In fact the reason for performing own calculations was that neither Bès et al. nor
Soloviev et al. have done calculations for all nuclei being of interest in our investi-
gation. Therefore it was not possible to use these previous results in the systematic
analysis of isotopic chains for various nuclei.

On the following pages the results of the calculations for the various rare-earth
nuclei are shown. The squares of the amplitudes Cm,i = (|xmi|2 − |ymi|2) of the
dominant states connected by the selection rules of the r2Y2±2 operator making
up the collective wave function are displayed separately for neutrons and protons.
To be precise, according to the last chapter, the value of the square of the forward
amplitude xmi minus the square of the backward amplitude ymi considered separately
for each contributing orbital combination is the indicator for the dominance of those
states in the wave function.
In the table below the plots, the percent value of each state in the collective wave
function is printed. As additional information the overall sum of the percent values
separately for all of the neutron states and all of the proton states is also shown.
Of course, the sum incorporating all these values for a nucleus is normalized to 100
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percent.
In calculations for the Pt isotopes, a lot of states with no importance are included.
This was an arbitrary choice which depends on the circumstance that later on in
this paper the results for different nuclei shall be compared. Therefore dealing
with nearly the same number of basis states displayed in all illustrations is more
convenient.
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4.2 Presentation of the results

Results for Gd isotopes
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Figure 4.1: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even Gd isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson states N = 88 N = 90 N = 92 N = 94 N = 96 N = 98

642+ 640+ 0,04 0,44 0,73 0,94 1,27 1,63
505+ 503+ 3,78 0,90 0,54 0,40 0,77 1,36
514+ 512+ 5,75 6,28 4,67 2,99 2,78 3,04
523+ 521+ 4,10 2,88 1,28 0,36 0,15 0,10
523- 521- 1,52 7,59 14,58 29,70 40,22 34,86
532- 530+ 45,15 2,53 0,54 0,10 0,05 0,03
521+ 521- 3,45 14,76 24,16 31,47 27,67 22,21
404- 402- 1,35 3,37 1,77 0,64 0,23 0,15
402- 400+ 6,98 8,39 5,77 2,43 0,68 0,38
neutrons total 72,10 47,15 54,04 69,02 73,81 63,76

532+ 530+ 0,50 1,70 1,43 0,93 0,86 1,04
541+ 541- 0,61 1,71 1,30 0,80 0,73 0,82
404+ 402+ 3,52 4,82 3,31 1,95 1,81 2,09
413+ 411+ 1,39 2,36 1,72 1,03 0,96 0,83
413- 411- 9,79 18,73 17,51 12,06 10,02 13,71
402+ 400+ 0,64 0,13 0,05 0,02 0,02 0,03
422- 420+ 1,98 0,54 0,21 0,09 0,09 0,07
411+ 411- 9,46 22,88 20,41 14,09 11,70 17,64
protons total 27,90 52,85 45,96 30,98 26,19 36,24

Table 4.1: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in Gd in terms of two quasi-particle exci-
tations between Nilsson states which are connected by the r2Y2±2 operator.

Although we have made calculations for 88 neutrons they are not shown in figure 4.1 because for
further evalutation only well-deformed nuclei with a stable ground state deformation and a ratio
R4/2 > 2.9 are considered.
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Results for Dy isotopes
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Figure 4.2: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even Dy isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson states N = 88 N = 90 N = 92 N = 94 N = 96 N = 98 N = 100

642+ 640+ 0,23 0,36 0,52 0,95 1,04 1,6 2,06
505+ 503+ 5,92 1,86 0,68 0,69 0,62 1,26 2,19
514+ 512+ 7,13 6,52 5,56 4,25 3,95 3,11 3,38
523+ 521+ 2,56 2,88 2,13 0,74 0,56 0,12 0,06
523- 521- 12,28 7,98 9,62 21,48 23,1 33,99 32,42
512+ 510+ 1,05 0,44 0,11 0,11 0,11 0,2 0,39
532- 530+ 6,72 3,62 1,28 0,26 0,18 0,04 0,02
521+ 521- 23,11 15,39 19,5 28,73 28,51 22,97 18,51
402- 400+ 3,29 4,73 8,42 3,38 2,92 0,45 0,2
neutrons total 62,28 43,78 47,81 60,60 60,98 63,74 59,24

532+ 530+ 0,84 1,56 1,62 1,25 1,21 1,08 1,17
541+ 541- 1,01 1,61 1,49 1,09 1,04 0,87 0,94
404+ 402+ 4,61 5,1 4,01 2,83 2,59 2,19 2,37
413+ 411+ 1,83 2,1 1,78 1,26 1,18 0,98 1,06
413- 411- 12,78 20,23 19,16 14,63 14,68 13,97 15,79
402+ 400+ 0,29 0,11 0,09 0,05 0,04 0,02 0,03
411+ 411- 16,34 25,53 24,04 18,28 18,29 17,14 19,4
protons total 37,72 56,22 52,19 39,40 39,02 36,26 40,76

Table 4.2: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in Dy in terms of two quasi-particle exci-
tations between Nilsson states which are connected by the r2Y2±2 operator.

Although we have made calculations for 88 neutrons they are not shown in figure 4.2 because for
further evalutation only well-deformed nuclei with a stable ground state deformation and a ratio
R4/2 > 2.9 are considered.
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Figure 4.3: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even Er isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson state N = 92 N = 94 N = 96 N = 98 N = 100

633+ 631+ 0,08 0,12 0,10 0,21 0,41
642+ 640+ 0,40 0,84 0,88 1,33 1,77
505+ 503+ 1,44 1,35 0,80 1,24 2,39
514+ 512+ 5,77 4,14 3,82 2,92 2,99
523+ 521+ 2,20 0,66 0,64 0,17 0,06
514- 512- 0,13 0,14 0,10 0,15 0,27
523- 521- 9,29 19,13 17,62 23,37 23,64
512+ 510+ 0,35 0,40 0,13 0,23 0,46
521+ 521- 18,12 24,56 22,71 18,53 14,53
neutrons total 37,77 51,35 46,79 48,16 46,51

523+ 521+ 1,06 0,76 0,72 0,59 0,60
532+ 530+ 1,97 1,43 1,43 1,20 1,17
404+ 402+ 4,09 2,84 2,90 2,24 2,27
413+ 411+ 0,46 0,33 0,30 0,25 0,22
404- 402- 0,53 0,24 0,16 0,08 0,09
413- 411- 20,29 16,40 18,02 17,77 18,20
402+ 400+ 0,50 0,23 0,15 0,08 0,09
411+ 411- 33,34 26,42 29,53 29,63 30,85
protons total 62,23 48,65 53,21 51,84 53,49

Table 4.3: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in Er in terms of two quasi-particle excita-
tions between Nilsson states which are connected by the r2Y2±2 operator.
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Figure 4.4: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even Hf isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson states N = 94 N = 96 N = 98 N = 100 N = 102 N = 104 N = 106

633+ 631+ 0,13 0,16 0,16 0,6 1,96 2,04 2,54
642+ 640+ 0,4 0,67 0,98 1,85 3,06 3,18 2,26
505+ 503+ 5,79 4,57 3,2 5,17 6,55 6,66 4,95
514+ 512+ 6,73 5,84 4,56 3,31 2,84 2,63 0,54
514- 512- 0,46 0,39 0,25 1,8 5,57 5,24 21,02
523- 521- 17,62 24,85 34,06 32,59 14,78 12,17 1,78
512+ 510+ 1,34 1,14 0,82 6,75 20,96 23,1 41,75
521+ 521- 27,03 32,44 34,54 22,25 9,97 8,05 1,36
512- 510+ 0,21 0,17 0,11 0,44 1,09 0,86 2,09
neutrons total 59,71 70,23 78,67 74,77 66,77 63,91 78,29

523+ 521+ 2,35 2,28 1,87 1,88 2,64 2,53 1,73
532+ 530+ 2,18 1,99 1,56 1,62 2,24 2,06 1,48
541+ 541- 1,46 1,15 0,61 0,99 1,28 1,07 0,91
404+ 402+ 3,18 2,63 1,98 2,23 2,99 2,76 2,12
404- 402- 8,17 4,01 5,59 3,73 7,28 13,33 3,36
413- 411- 6,79 3,83 1,65 3,11 3,13 2,27 2,39
402+ 400+ 4,47 7,52 5,4 6,32 8,45 8,1 5,5
411+ 411- 11,7 6,38 2,66 5,35 5,23 3,96 4,22
protons total 40,29 29,77 21,33 25,23 33,23 36,09 21,71

Table 4.4: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in Hf in terms of two quasi-particle excita-
tions between Nilsson states which are connected by the r2Y2±2 operator.



4.2 Presentation of the results 51

Results for Yb isotopes
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Figure 4.5: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even Yb isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson state N = 92 N = 94 N = 96 N = 98 N = 100 N = 102 N = 104

633+ 631+ 0,1 0,11 0,19 0,18 0,5 1,44 2,44
642+ 640+ 0,3 0,49 1,09 1,21 1,89 2,54 2,59
505+ 503+ 4,51 2,82 2,1 1,66 3,06 4,24 4,33
514+ 512+ 7,31 6,87 4,93 4,03 3,37 3,04 1,72
514- 512- 0,27 0,2 0,24 0,18 0,42 1,32 3,98
523- 521- 11,98 14,8 22,56 28,14 32,8 14,32 3,44
512+ 510+ 0,75 0,57 0,69 0,28 0,87 3,51 11,47
521+ 521- 22,39 25,75 27,55 27,3 19,07 7,78 2,12
512- 510+ 0,13 0,11 0,06 0,04 0,07 0,14 0,23
neutrons total 47,74 51,73 59,41 63,02 62,05 38,32 32,32

523+ 521+ 2,04 1,93 1,6 1,32 1,18 1,35 1,22
532+ 530+ 2,29 2,21 1,87 1,54 1,37 1,57 1,44
541+ 541- 1,61 1,48 1,1 0,92 0,83 0,99 0,92
404+ 402+ 4,45 4,27 3,51 2,86 2,54 2,91 2,67
404- 402- 1,98 1,08 0,89 0,52 0,42 0,42 0,4
413- 411- 14,48 13,12 11,56 10,79 11,22 18,25 19,77
402+ 400+ 1,79 1,95 0,81 0,45 0,35 0,35 0,32
411+ 411- 23,62 22,22 19,26 18,57 20,04 35,83 40,94
protons total 52,26 48,27 40,59 36,98 37,95 61,68 67,68

Table 4.5: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in Yb in terms of two quasi-particle exci-
tations between Nilsson states which are connected by the r2Y2±2 operator.
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Figure 4.6: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even Sm isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson states N = 90 N = 92 N = 94 N = 96 N = 98

505+ 503+ 1,23 0,33 0,16 0,1 0,35
514+ 512+ 6,4 4,81 2,66 1,53 0,92
523+ 521+ 3,27 1,83 0,46 0,17 0,02
523- 521- 6,36 9,97 25,33 45,3 80,5
532- 530+ 4,21 0,77 0,11 0,04 0,01
521+ 521- 13,37 21,1 37,14 39,5 15,47
404- 402- 5,9 4,35 1,84 0,62 0,05
402- 400+ 24,4 35,75 24,42 8,79 0,32
402+ 400+ 2,75 3,92 0,96 0,31 0,04
neutrons total 67,89 82,83 93,08 96,34 97,68

532+ 530+ 1,04 0,78 0,4 0,21 0,13
541+ 541- 1,54 1,35 0,7 0,36 0,23
404+ 402+ 4,82 2,77 1,25 0,64 0,41
413+ 411+ 3,72 3,36 1,76 0,91 0,57
413- 411- 9,24 4,07 1,25 0,68 0,43
402+ 400+ 0,08 0,02 0 0 0
422- 420+ 1,79 1,08 0,41 0,23 0,15
411+ 411- 9,88 3,74 1,14 0,63 0,4
protons total 32,11 17,17 6,92 3,66 2,32

Table 4.6: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in Sm in terms of two quasi-particle exci-
tations between Nilsson states which are connected by the r2Y2±2 operator.
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Figure 4.7: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even Pt isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson states N = 106 N = 108 N = 110 N = 112 N = 114 N = 116 N = 118

633+ 631+ 0 0 0 0 0 0 0
505+ 503+ 3,18 1,02 0,7 0,52 0,24 0,14 0,07
505- 503- 0,21 1,68 1,32 4,48 6,57 7,78 8,86
514- 512- 7,55 10,35 8,79 9,22 5,85 4,94 3,84
503+ 501+ 0,36 5,28 6,32 10 11,27 11,41 11,96
523- 521- 0 0 0 0 0 0 0
512+ 510+ 13,85 10,56 8,64 9,73 5,56 4,46 3,44
521+ 521- 0 0 0 0 0 0 0
512- 510+ 2,11 17,29 18,86 20,74 30,07 34,33 44,02
neutrons total 27,26 46,19 44,63 54,69 59,56 63,07 72,18

523+ 521+ 0 0 0 0 0 0 0
532+ 530+ 0 0 0 0 0 0 0
404+ 402+ 0 0 0 0 0 0 0
404- 402- 7,31 5,67 5,44 6,76 6,09 5,69 4,97
413- 411- 0 0 0 0 0 0 0
402+ 400+ 15,46 11,86 11,91 13,9 12,47 11,71 9,64
411+ 411- 0 0 0 0 0 0 0
402- 400+ 49,97 36,29 38,02 24,65 21,88 19,53 13,2
protons total 72,74 53,81 55,37 45,31 40,44 36,93 27,82

Table 4.7: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in Pt in terms of two quasi-particle excita-
tions between Nilsson states which are connected by the r2Y2±2 operator.
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Figure 4.8: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even Os isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson states N = 100 N = 102 N = 104

633+ 631+ 0,67 0,69 1,47
642+ 640+ 1,56 1,57 1,99
505+ 503+ 5,97 5,85 6,08
514+ 512+ 2,45 2,3 1,14
514- 512- 4,54 4,77 14,14
523- 521- 27,58 25,91 9,98
512+ 510+ 14,47 15,01 28,05
521+ 521- 20,63 19,3 8,19
512- 510+ 0,96 0,99 3,16
neutrons total 78,83 76,39 74,2

523+ 521+ 0 0 0
532+ 530+ 0 0 0
404+ 402+ 0 0 0
404- 402- 12,07 13,61 14,76
413- 411- 0 0 0
402+ 400+ 8,03 9,03 9,85
411+ 411- 0 0 0
402- 400+ 1,07 0,97 1,19
protons total 21,17 23,61 25,8

Table 4.8: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in Os in terms of two quasi-particle exci-
tations between Nilsson states which are connected by the r2Y2±2 operator.
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Figure 4.9: Most relevant two quasi-particle amplitudes for the 2+
γ state in well deformed

even-even W isotopes. The radius of the circles indicates the fraction of each
wave-function component with respect to the total wave function. Eeach row
is classified by the neutron number of the isotope.

Nilsson states N = 100 N = 102 N = 104

633+ 631+ 0,69 1,02 1,64
642+ 640+ 1,73 2,09 2,38
505+ 503+ 5,87 6,32 6,39
514+ 512+ 2,92 2,47 1,54
514- 512- 3,22 5,27 10,8
523- 521- 28,52 22,92 12,06
512+ 510+ 11,41 17,92 29,87
521+ 521- 21,61 16,98 9,05
512- 510+ 0,76 1,07 1,79
neutrons total 76,73 76,06 75,52

523+ 521+ 0 0 0
532+ 530+ 0 0 0
404+ 402+ 0 0 0
404- 402- 11,28 11,53 11,86
413- 411- 0 0 0
402+ 400+ 7,41 7,6 7,81
411+ 411- 3,89 4,08 4,09
402- 400+ 0,69 0,73 0,72
protons total 23,27 23,94 24,48

Table 4.9: The composition of the neutron part (upper table) and the proton part (lower
table) of the γ-vibrational wave function in W in terms of two quasi-particle excita-
tions between Nilsson states which are connected by the r2Y2±2 operator.
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4.2.1 Comparison with other calculations

It it is important to verify that the results shown in this work which were cal-
culated in the framework of the Random Phase Approximation incorporating the
quadrupole and the pairing residual interaction are reasonable in view of the sim-
plifications entering in our calculation. With regard to the various simplifications
applied in our calculations (illustrated at the beginning of this chapter) at least
the qualitative distribution of the wave function on the various basis states should
roughly correspond with results from calculations performed in other papers and
results that were obtained experimentally.

As already mentioned in 1964 similar calculations have been performed by Bès et
al. [20] concerning the composition of the gamma-vibrational state in deformed
even-even rare earth nuclei. Actually we have taken these results as a guideline to
determine the most important two quasi-particle Nilsson states to be taken into con-
sideration in our calculations. Therefore it does not surprise that the quasiparticle
composition obtained in this paper - if our model is correct and the simplifications
are appropriate - resembles those results. Due to the many small components which
we do not treat it is quite clear that our results focused on the major components
are usually overpredicted (because of their normalization to 1). Indeed, as already
mentioned, the small components make up a constant value of about ten percent of
the vibrational wave function according to the calculations carried out by Bès et al.
for the rare earth nuclei.
Altogether a detailed comparison of our results and the results of Bès et al. for the
Gd, Dy, Er, Yb and Hf isotopes - especially focused on the qualitative evolution
of the structure of the wave-function as moving along an isotopic chain - shows a
good agreement. Thus the various simplifications applied in our model seem to be
justified.
For some Gd, Dy, Er isotopes and the Hf isotope with 106 neutrons calculations
by Soloviev et al. [24, 27] have been performed in the context of the quasiparticle-
phonon nuclear model (QPNM) [21-23]. In comparison to our simple model the
QPNM is rather complicated. The initial QPNM Hamiltonian for nonrotational
states of deformed nuclei consists of the average field of the neutron and proton sys-
tems in the form of the axialy symmetric Woods-Saxon potential, monopole pairing,
and in addition also isoscalar and isovector particle-hole and particle-particle mul-
tipole, spin-multipole, and tensor interactions between the quasiparticles.
Nevertheless, the results from the present work plotted together with the results of
Soloviev et al. and Bès et al. in figures 4.10-4.13 show an overall reasonable agree-
ment, although the admixture of two quasi-particle states that cannot be connected
by the r2Y2±2 operator is in some cases significant, in particular in calculations by
Soloviev et al.. However, the agreement seems sufficiently good to give confidence
to the schematic calculation of this work, that is primarily interested in the investi-
gations of trends in the contributions of those two quasi-particle states that can be
connected by the r2Y2±2 operator.
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Figure 4.10: Comparison of the strongest two-quasiparticle components in the wave func-
tion of the 2+

γ state (in percent) in Gd isotopes in the calculations from this
work with those by Bès et al. [20] and by Soloviev et al. [24].
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Figure 4.11: Comparison of the strongest two-quasiparticle components in the wave func-
tion of the 2+

γ state (in percent) in Dy isotopes in the calculations from this
work with those by Bès et al. [20] and by Soloviev et al. [24].
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Figure 4.12: Comparison of the strongest two-quasiparticle components in the wave func-
tion of the 2+

γ state (in percent) in Er isotopes in the calculations from this
work with those by Bès et al. [20] and by Soloviev et al. [24].
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Figure 4.13: Comparison of the strongest two-quasiparticle components in the wave func-
tion of the 2+

γ state (in percent) in the 178Hf isotope in the calculations from
this work with those by Bès et al. [20] and by Soloviev et al. [27].



Chapter 5

Discussion of the results

In this chapter we show that structural evolution obtained in the Interacting Boson
Model (IBA) for the rare-earth region can indeed be linked to the qualitative be-
haviour of the distribution of the gamma vibrational wave-function among the basis
states as calculated in our microscopic approach.
We explicitly refer to the trajectories of the rare-earth nuclei in the IBA symmetry
triangle [16, 17] as illustrated in section 1.2.
Finally, a formula is presented which shows that even a quantitative correlation
of the results from the microscopical calculations with the paramter χ in the IBA
Hamiltonian is present.

5.1 The distribution function S and the gamma

correlation function Γ

Considering the results presented in chapter 4 it can be seen that the number of
important components of the collective wave function is limited to a maximum value
of nine orbital combinations for the neutrons and eight orbital combinations for the
protons in the rare-earth region. In order to make a reasonable comparison between
different distributions of the wave function among the basis states, it is necessary to
work with a fixed number of basis states for all nuclei. Thus we normalize the calcu-
lation to the maximum quantity of contributing orbits separately for neutrons and
protons. This means, for example, if our calculations yielded only five important
proton states it would be necessary to take another three states with zero contribu-
tion into account.
A distribution function Sα(k) is now constructed to make it possible to distinguish
in a quantitative way whether the collective wave function is mainly carried by a few
dominant Nilsson states representing a large part of the collective wave function, or

59
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whether the collective wave function is distributed in more or less equal parts over
a large number of basis states:

Sα(k) =

∑k−1
h=1

∑

l>h |C
(h)
mi − C

(l)
mi|

(k − 1)
;

k
∑

h=0

C
(h)
mi = 1 (5.1)

The total number of contributing states is denoted by k. The index α = n, p
distinguishes between neutrons and protons. It is of course necessary that the sum
of the squares of the amplitudes entering formula (5.1) are normalized to 1. Thus
the results from chapter 4 have to be modified first to be suitable for the calculation
if the neutron or proton parts are analysed separately.
The distribtion function S can have values between 0 and 1. For the case that
exactly one two-quasiparticle excitation conributes to the gamma-vibrational wave
function one obtains Sα(k) = 1 while Sα(k) = 0 is reached in the case that all k
two-quasiparticle excitations contribute exactly with the same squared amplitudes.
Due to the normalization to a fixed number of basis states for all rare-earth nuclei
under consideration it is possible to skip the previous notation Sα(k) and simplify
it to Sα.

In figure 5.1 an illustration is shown to verify that the distribution function works in
the way indicated above. We choose a set of eight contributing states and determine
all possbile values of the squared amplitudes, in the order of their magnitude from
left to right, which lead to the same value of the distribution function S. Each possi-
ble combination of the eight values is connected by straight lines. It can be seen that
the distribution function indeed delivers a reasonable classifaction for distributions
lying between the limiting cases of S = 1 and S = 0.

Besides the distribution functions Sn and Sp we can, within the framework of our
model, also determine the fractions fp and fn of the proton and neutron quasiparti-
cles to the wave function of the gamma-vibrational state (fn +fp = 1). These values
were already presented in the previous chapter in tables 4.1-4.9. Figures 5.3-5.10
show the distribution functions Sn, Sp, as well as the fraction fn for well deformed
Sm, Gd, Dy, Er, Yb, Hf and Os, W isotopes. Also shown is the distribution function
S for which all squared amplitudes were considered without distinguishing between
neutrons and protons.

One can observe some general feature for the distribution functions. The proton
distribution function Sp remains almost constant as a function of neutron number
for most elements. Exceptions to this behaviour occur only, e.g. in 174Hf , due to
a variation of the quadrupole deformation causing variations in the occupation of
quasiparticle states. For the neutron distribution function Sn there are significant
variations as a function of neutron number due to changes of the Fermi energy as one
moves along an isotopic chain. Therefore the development of the neuton distribution
function Sn is of prime interest and the total distribution function S, characterizing
the distribution of the wave function among all basis states without distinguishing
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Figure 5.1: Illustration of the distribution function for eight contributing states.
The states are given in the order of their magnitude from left to right.
The vertical axis is in percent.

between neutrons and protons, correlates mostly with Sn.
Another remarkable feature is the strong correlation in most nuclei between Sn and
fn, the fraction of the entire collective wave function carried by all the neutron states
together. To avoid any misunderstandings it should be reemphasized that Sn only
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takes the distribution among the neutron states into account. Due to its construction
it is completely independent of the neutron fraction of the wave function. However,
the evaluated data shows that the process of building up a few highly dominant
neutron basis states when moving along the isotopic chain is most often connected
with the transfer of weight in the entire wave function from the proton states to the
neutron states.

Finally all the information gathered so far is combined into one value which we
denote gamma correlation function Γ.

Γ =
1

4
[fp · Sp · fn · Sn] (5.2)

It is obvious that the possible values of Γ are located in the interval [0, 1]. The value
of Γ is close to 1 if both for neutrons and protons the collective wave function is
only carried by a few dominant states. Furthermore the wave function should be
equally distributed among both kinds of nucleons.
In figure 5.2 we show the gamma-correlation function as a function of the neutron
number for the rare-earth nuclei. The Γ values for the gamma-soft Pt isotopes for
which the application of our model is certainly questionable are also inlcuded (see
section 5.6 for further details). These results should only be taken as some general
guidance.
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Figure 5.2: Gamma-correlation function Γ as a function of neutron number.

The IBA calculations presented in the introduction show quite different trajectories
for Gd, Dy and Er on one side and for Yb, Hf on the other. Here we want to
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concentrate on the behaviour of the polar angle θ, which was defined in the IBA
section of this work. The angle is related to the gamma-softness of the various
nuclei. Table 5.1 explicitly summarizes the angles θ that were obtained in the IBA
fits [16].

N θ (Gd) θ (Dy) θ (Er) θ (Yb) θ (Hf)
90 10.1 21.5
92 21.0 29.6 32.8 41.0 39.6
94 23.7 37.8 36.0 36.4 36.0
96 36.0 45.9 43.2 33.7 32.8
98 46.4 48.2 45.9 32.3 24.2
100 43.7 28.7a 21.9
102 19.6a 10.1
104 16.5

Table 5.1: Angle θ = (180◦/π) · (π/3 + (2/
√

7)χ(π/3)) in the IBA symmetry triangle for
the well deformed Gd, Dy, Er, Yb, and Hf as a function of neutron number.
The marking a means that the corresponding parameter χ was obtained by
considering the second excited 0+ state as the first excited collective 0+ state.

The detailed discussion of the nuclei on the following pages is supposed to relate
their behaviour in the symmetry triangle to the gamma-correlation function and the
underlying distribution functions.
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5.2 Sm isotopes

For the Sm isotopes IBA calculations using a simplified Hamiltonian were performed
by Scholten et al. [31]. In these calculations best fits for the even-even Sm isotopes
with N ≥ 90 were obtained using a value of χ = −

√
7/2, placing those nuclei on

the U(5)-SU(3) leg of the symmetry triangle with θ = 0. Thus the Sm isotopes are
the most gamma-rigid well deformed nuclei considered in this study.

90 92 94 96 98
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0 Sm

N

 S
 S

n
 S

p
 f

n

Figure 5.3: Distribution functions Sn and Sp for neutrons and protons, respectively, as a
function of neutron number for well deformed even-even Sm isotopes together
with the fraction fn of neutrons in the wave-function of the 2+

γ state and
the distribution function S that does not distinguish between neutrons and
protons.

The distribution of the wave function among the neutron basis states in Sm (see
figure 5.3) changes its structure from an equal distribution of the wave function
among many basis states to a dominance of few basis states leading to an increasing
neutron distribution function Sn in figure 5.3. The protons show overall a very
low proton distribution function Sp. At the same time one can observe a complete
dominance of the neutrons in the wave-function of the 2+

γ state with fn > 0.9
for neutron numbers above N=92. This fact should be reflected in experimental
electromagnetic reduced transition probabilities, potentially leading to strong M1
transitions from the 2+

γ state to the 2+
1 state. Indeed the extreme dominance of

the neutrons is mainly responsible for the gamma rigidity of the Sm isotopes and
determines the low values of the gamma correlation function Γ in figure 5.2.
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5.3 Gd, Dy and Er isotopes

Within the IBA study of Ref. [16] the Dy and Gd isotopes evolve with increasing
neutron number from intermediate angles around 20-30◦ for N=92, after crossing
the transition from spherical to deformed phase, to larger angles close to 50◦ for
N=98. At the same time the radial coordinate increases so that the O(6)-SU(3) leg
of the symmetry triangle is reached near to the O(6) corner of the triangle. Thus
these Dy and Gd nuclei show an increasing gamma-softness with increasing neutron
number. However, one should keep in mind that these nuclei have a rotational R4/2

value and thus are still quite far from a gamma-soft potential.
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Figure 5.4: Same as figure 5.3 for Gd isotopes

In our calculation after the phase transition from spherical to deformed (N > 90) the
Gd and Dy isotopes show the same structural evolution. The proton distribution
function Sp in the figures 5.4, 5.5 stays for all isotopes on a relatively high level
of about 0.7 indicating that the quasi-proton wave function is spread over only
a few important basis states. Moving along the isotopic chain to higher neutron
numbers the development among the neutron states changes their structure in Gd
and Dy from an equal distribution of the wave function among many basis states
to a dominance of few basis states leading to an increasing neutron distribution
function Sn in figures 5.4 and 5.5. In this context the slope down of N=96 Gd in the
plot of the gamma correlation function Γ might at first glance be confusing but one
has to realize that Γ also incorporates beside Sn and Sp the wave function fractions
fp and fn. The increasing dominance of the neutron states (fn ≈ 0.75) and hence
the decreasing fp values lead, despite the large Sn and Sp values to a reduction of
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Figure 5.5: Same as figure 5.3 for Dy isotopes
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Figure 5.6: Same as figure 5.3 for Er isotopes

Γ. Considering the entire structural evolution it is apparent from our calculations
that the Gd and Dy isotopes become gamma-soft for high neutron numbers.

All of the Er isotopes have nearly constant values of Sn and Sp (see figure 5.6) which
are located at a rather high level comparable to the Gd and Dy isotopes and the
wave function is except for 160Er (N=92) perfectly balanced between neutrons and
protons. Therefore all of the considered Er isotopes show a completely gamma-soft
behavior with values for the gamma-correlation function Γ in figure 5.2 even higher
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than those of the Gd and Dy isotopes. This result is consistent with the trajectory
for the Er isotopes in the IBA triangle [16] which is lying somewhat above (higher
angles) those trajectories of the Gd and Dy isotopes.

5.4 Yb and Hf isotopes

The Yb and Hf isotopes evolve quite differently in the IBA calculations [16], starting
out at angles near 40◦ for N=92 down to angles below 20◦ for N ≥ 102. Please note
that for 170,172Yb we used the χ-values obtained under the assumption that the
second excited 0+ state in these nuclei is the first excited collective 0+ state. On
first sight the trend of the two isotopic chains seems to be quite similar. On closer
inspection one can, however, observe that the Yb isotopes stay at angles near 30◦

up to N = 100 and drops down to 20◦ for N=102 while θ drops for the Hf isotopes
continuously from 30◦ at N=96 to 10◦ at N = 102, after which an increase in θ is
observed to about 17◦.
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Figure 5.7: Same as figure 5.3 for Yb isotopes

In the present approach the different behavior of the proton distribution function Sp

for the Yb and Hf isotopes in figures 5.7 and 5.8 is the main reason for the different
evolution of Γ for these two isotopic chains, that is visible in figure 5.2. While
the Yb isotopes start out with a trend towards gamma-softness (large Γ values)
and drop suddenly to lower Γ-values at N = 102, the Hf isotopes start already at
significantly lower Γ values of about 0.3 and drop to even lower values of about 0.15
at N = 102. For N = 104 the Γ-value increases again slightly only to drop back
down for N = 106, for which unfortunately no IBA calculations were performed
in [16] due to the large boson number.
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Figure 5.8: Same as figure 5.3 for Hf isotopes

For Yb the proton distribution function Sp is located at a level of about 0.7 increasing
moderately with the neutron number meanwhile for Hf Sp is located at low values of
about 0.4. For the Yb isotopes fromN = 92 to N = 100 and for the Hf isotopes from
N = 94 to N = 98 the neutron distribution function Sn stays nearly at the same
level of about 0.77. This would imply a more or less constant behavior (of course
at different levels for Yb and Hf) of the gamma correlation function Γ for those
isotopes. However, in Yb the moderately increasing proton distribution function
Sp leads to an increasing gamma-softness comparable in its rise with the rise of
the Dy isotopes. For Hf isotopes the gamma correlation function Γ reveals even a
slope down towards gamma-rigidity which is caused by the growing inequality in the
distribution of the wave function on proton and neutron states. For the Yb isotopes
from N = 102 to N = 104 the high value of the neutron distribution function Sn

suddenly breaks away due to a change from a dominance of neutrons in the 2+
γ wave

function (fn ≈ 0.5−0.6) to a more dominant proton fraction (fp ≈ 0.6−0.7) that goes
hand in hand with a change from a situation with few neutron quasiparticle states
dominating the neutron wave-function (Sn ≈ 0.77) to a more equal contribution of
many neutron basis states to the neutron wave-function (Sn ≈ 0.5) for N > 100.
Therefore the isotopes go towards a more gamma rigid structure as the gamma-
correlation function clearly shows. For the Hf isotopes from N = 100 to N = 102
exactly the same happens to the neutron states with the same intensity as in Yb
leading to a further slope down of the new rating factor. Finally for N = 104 the
Γ-value increases again towards gamma softness because of a sudden upward peak
in Sp characterizing the proton state distribution. Despite the further growth of Sn

for N = 106 the Γ drops down again. This is due partly to the increasing inequality
of the distribution of the wave function among protons and neutrons and partly due
to the return of Sp to its usual value for this isotopic chain.
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5.5 Os and W isotopes

According to recent IBA Fits [17] the trajectories of the Os and W isotopes with
100, 102 and 104 neutrons lie quite close together, grouped very compactly close to
the center of the triangle. The angle θ corresponds approximately to 19◦.
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Figure 5.9: Same as figure 5.3 for Os isotopes
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Figure 5.10: Same as figure 5.3 for W isotopes

In our calculations the distribution functions Sp and Sn as well as the neutron
fraction of the wave function fn do not change significantly along the short isotopic
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chains for both elements. Furthermore Os and W show the same behaviour. The
distribution function Sp is in both cases constant at a high level indicating that only
a few orbital combinations contribute to the proton part of the wave function. The
distribution function Sn for the neutrons also shows that there are only some few
dominant neutron quasiparticle states. For Os and W the value of Sn is smaller than
the value of Sp indicating that the neutron part of the wave function is spread over
more orbital combinations in comparison to the proton part of the wave function.
The relative low value of the gamma correlation function Γ corresponding to Gd and
Dy isotopes with N = 90 is given because of the strong dominance of the neutrons
in the entire wave function (fn ≈ 0.8) for all Os and W nuclei.

5.6 Pt isotopes

The structural evolution of the Pt isotopes from 172Pt to 194Pt has been recently
re-investigated within the IBA [17,18] using the same simple two-parameter Hamil-
tonian as applied for the rare earth region [16]. It was shown that their structure
can be described by a smooth evolution ”from spherical with soft energy surfaces to
deformed nuclei with increasingly γ-soft surface as N increases” [18]. The structure
of this isotopic chain ends in the classic O(6) nucleus 196Pt [32].
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Figure 5.11: Same as figure 5.3 for Pt isotopes

In our current approach all of the Pt isotopes show an overall gamma-soft behav-
ior with high neutron and proton distribution functions Sn and Sp of about 0.7 to
0.9 (see figure 5.11). The distribution of the wave function between neutrons and
protons in general is also sufficiently balanced so that the values of the gamma-
correlation function Γ for the Pt isotopes in figure 5.2 are relatively large and com-
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parable to the highest values obtained for the neutron-rich Dy isotopes. The large
values of Γ for the Pt isotopes relate well to the gamma-softness of the energy
surfaces found in Ref. [18].

Despite the sensible results the calculations for the Pt isotopes yield in our model
those results should be treated with caution. The Pt isotopes have only a slight
deformation and the applied approximation in our approach (chapter 4.1) in calcu-
lating the interaction matrix elements is definitely not appropriate anymore. Our
model and especially the further linear approach to relate the IBA angle to the values
of the gamma-correlation function (see the following section 5.7) is only successful
for well deformed nuclei. Applying it to the results for all Pt isotopes delivers IBA
angles far above 60◦.

5.7 Relation between Γ and Θ

So far we have discussed the behavior of the gamma-correlation function Γ for the
various isotopic chains of even-even nuclei. It was possible to understand the evolu-
tion of Γ on the basis of the underlying dominant two-quasiparticle states.
Qualitatively, one can already see some similarities between the evolution of Γ and
the angle Θ in the IBA triangle. In general large values of Γ relate to large angles
Θ and vice versa.

In this section we would like to take this investigation one step further by trying to
relate the gamma-correlation function directly to the angle θ which is proportional
to the parameter χ in the simplified IBA Hamiltonian. However, besides Γ, one
needs to take the energy of the 2+

γ state explicitly into account, which also reflects
directly the gamma-softness. We will do this using the energy ratio

R22 ≡
E(2+

γ )

E(2+
1 )
.

For example, for gamma-soft nuclei near the O(6) limit one finds R−1
22 ≈ 0.4, while

in the well deformed nuclei under investigation here, R−1
22 will take on much smaller

values.

We have found that a linear combination of R22 and Γ is a reasonable starting point
to reproduce the angles θ in the symmetry triangle. In order to obtain values for
θ, we needed to introduce a baseline that was given by the Sm isotopes, that lie
directly on the U(5) to SU(3) leg of the symmetry triangle and thus have θ = 0◦

(Ref. [31]). Therefore we have subtracted the Γ- and R22-values for the Sm isotope
with the same neutron number from the values for a given nucleus with proton
number Z and neutron number N . Due to missing experimental data for Sm nuclei
with N > 98 no calculations in the framework of our model could be made for these
isotopes. Therefore we have used the Γ-value for the N = 98 isotope 160Sm for
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all Sm isotopes with N > 98. We end up with the following relation between θ in
radians and the two dimensionless quantities R22 and Γ:

θ = (Γ(Z,N) − Γ(62, N)) +R22(O(6)) ·
(

R−1
22 (Z,N) −R−1

22 (62, N)
)

(5.3)

with R22(O(6)) being the R22 value in the limit of the gamma unstable rotor. This
relation works well for the Gd, Dy, Er, Yb and Hf isotopes.
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Figure 5.12: Angles θp.w calculated using equation (5.3) against angles obtained in the
IBA fits. The dashed straight line indicates where the data points would
lie in the case of a perfect correlation.

Figure 5.12 shows the angles θp.w from equation (5.3) against the angles θIBA ob-
tained from the IBA calculations [16]. As one clearly sees, the θ-values calculated in
our current approach correlate very well with those of the IBA fits. Unfortunately,
the deeper theoretical connection leading to this equation escapes us at this point.
Concerning this problem we make two remarks:

• It is obvious that the values E2+
γ

and Γ entering the formula (5.3) are not com-
pletely independent from each other. They are linked by the RPA equations
describing the vibration. The energy of the vibrational state is somehow con-
nected to the distribution of the contributing orbital combinations, but it was
not possible to derive an explicit relation. This problem partly results from
the many unknown small components which are part of the wave function.

• An approach to understand the relation between our calculations and the IBA
values could be to create a kind of mapping of the IBA bosons that are affected
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by the d†d term1 in the IBA quadrupole operator onto the corresponding
deformed shell model states being important for the microscopical composition
of the gamma-vibrational wave function. Perhaps this investigation would
bring some insight why the phenomenological formula works, but this is clearly
beyond the scope of this thesis.
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Figure 5.13: Another illustration of the correlation between equation (5.3) and the IBA
angle is plotted in these figures. The horizontal axis denotes the neutron
number N of the isotopes and the angle in degree is plotted on the ver-
tical axis. The illustration also shows the predicted values resulting from
equation (5.3) for the angle θ for Hf N=106, Yb N=104 and Dy N=100.
Unfortunately for these isotopes no IBA fits are available.

1 remember that χ and thus θ determines the strength of its contribution in the IBA quadrupole
operator
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In figure 5.13 another illustration of the correlation is shown. The solid lines indicate
the IBA values and the dashed lines refer to our formula. Using the obtained data
from our microscopical calculations for Hf with N=106, Yb with N=104 and Dy with
N=100 it was also possible to predict IBA angles θ for these isotopes. For Hf with
106 neutrons the former rise towards gamma-softness for 104 neutrons decreases
again yielding an angle of about 12◦. The Dy isotope with 100 neutrons preserves
the gamma-softness of Dy N=98. Finally for Yb with 104 neutrons we predict a
further slope down of the gamma-softness to an angle of about 16◦. Unfortunately
because of the limitation of the boson number in the computer program used to
obtain the IBA fits in Ref. [16] no fits for these isotopes were done.

Summarizing the previous discussion, equation (5.3) suggests the following ”micro-
scopical” definition of gamma-softness in well deformed rotational nuclei. Actually
we have a linear combination of two conditions:

• Nuclei tend to gamma-softness if the neutron and proton part of the collective
gamma-vibrational wave function is each dominated by only a few strongly
contributing Nilsson states i.e. two quasi-particle excitations. Furthermore
the wave function should be distributed in equal parts onto neutrons and
protons2.

• Nuclei with a relatively low lying energy of the gamma-vibrational state E2+
γ

in comparison to the energy of the 2+ state of the ground-state rotational band
also tend to a gamma-soft behaviour.

Our formula (5.3) was also applied to well-deformed Os and W isotopes with 100,
102 and 104 neutrons. The results are shown in figure 5.14. It is obvious that the
IBA calculations [17] predict significantly lower values for the angle θ and also nearly
the same angle for Os and W. Especially for Os the angle derived from our formula
is about twice the value from the IBA fits. Moreover the behaviour of Os and W ist
not similar.
A closer look at the paper of McCutchan et al. [17] reveals that in the fits for
the Os and W isotopes the reproduction of the gamma-band was not satisfactory.
The level of agreement for the location of the 2+

γ state varies for different isotopes.
It is generally overpredicted, in some cases by about 200keV. One other obvious
discrepancy is the staggering in the γ-band for the W and Os nuclei. For the chosen
parameters in the simplified Hamiltonian the IBA gives the sequence (2+, 3+)(4+,
5+) while experimentally a rather constant spacing with increasing spin is observed.

2 We assume that neutrons and protons oscillate in a coherent manner (isoscalar) in the gamma-
vibration: If only one kind of nucleon is able to carry out oscillations (due to available two
quasiparticle excitations) the attractive neutron-proton interaction will lead to a significant sup-
pression of the entire motion due to the strong coupling to the rigid nucleon component. Thus it
is easier for a nucleus to oscillate if both neutrons and protons equally participate in the vibration
leading to gamma-softness.
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Figure 5.14: Additional application of equation (5.3) to the well-deformed Os and W
isotopes. The vertical axis corresponds to the angle θ and the horizontal
axis represents the neutron number (see figure 5.13). The IBA values for
Os and W are taken from Ref. [17].

Indeed the energy of the 2+
γ state and the staggering in the γ-band are explicitly

connected with the gamma-softness and thus with the angle θ in the symmetry
triangle. Gamma-soft nuclei show the sequence (2+)(3+, 4+) in the gamma-band
while (2+, 3+)(4+, 5+) indicates gamma-rigidity.

A further look at the ratio Rγ ≡ B(E2:2+
γ →0+

1
)

B(E2:2+
γ →2+

1
)

of reduced transition probabilities

connected with the gamma-vibrational state shows that the experimentally known
value of about 0.2 for 176Os is not reproduced in the IBA fits [17] yielding a value
of about 10 for all Os and W isotopes.
The reason for these discrepancies is that in the paper of McCutchan et al. [17] the
major priority was laid on a correct reproduction of the ground-state band and the
K = 0 band.

For the three Os isotopes using a modified version of the program PHINT written by
O. Scholten we have performed our own IBA fits. It turns out that for an angle θ of
about 36◦, which coincides with the predictions of our calculations in formula (5.3),
the experimental gamma-band values are well reproduced. The price we pay for
this improvement is the fact that the agreement with the experimental K = 0 band
is completely lost. But with regard to our microscopical model explicitly treating
the gamma-vibration this approach to accurately reproduce the gamma-band seems
to be reasonable. The results of our fits are shown in tables 5.2-5.4. It should be
emphasized that the determined IBA fits are not optimized to deliver the best fits
to the gamma-band that are possible. They only show that an angle of θ ≈ 36◦

works.
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176Os experimental value IBA fit value deviation in percent

2+
1 135 keV 135 keV 0

4+
1 395 keV 400 keV 1

6+
1 742 keV 779 keV 5

R4/2 2.93 2.96 –

2+
γ 864 keV 843 keV 2

3+
γ 1038 keV 1110 keV 7

4+
γ 1224 keV 1207 keV 1

0+
2 601 keV 946 keV 57

2+
K=0 band 742 keV 1272 keV 71

Rγ 0.20 0.17 –

Table 5.2: Our IBA Fit obtained for well-deformed 176Os with the Hamiltonian param-
eters ζ = 0.70 and χ = −0.53 corresponding to θ ≈ 36◦ and NBosons = 12.
The ratio Rγ is the same as defined in the text.

178Os experimental value IBA fit value deviation in percent

2+
1 132 keV 132 keV 0

4+
1 398 keV 396 keV 0

6+
1 761 keV 774 keV 2

R4/2 3.02 3.00 –

2+
γ 864 keV 897 keV 4

3+
γ 1032 keV 1152 keV 11

4+
γ 1213 keV 1258 keV 4

0+
2 650 keV 1006 keV 55

2+
K=0 band 771 keV 1323 keV 72

Rγ unknown 0.19 –

Table 5.3: Our IBA Fit obtained for well-deformed 178Os with the Hamiltonian param-
eters ζ = 0.70 and χ = −0.53 corresponding to θ ≈ 36◦ and NBosons = 13.
The ratio Rγ is the same as defined in the text.
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180Os experimental value IBA fit value deviation in percent

2+
1 132 keV 132 keV 0

4+
1 408 keV 389 keV 5

6+
1 795 keV 751 keV 9

R4/2 3.09 2.95 –

2+
γ 870 keV 830 keV 5

3+
γ 1023 keV 1091 keV 7

4+
γ 1197 keV 1183 keV 1

0+
2 736 keV 901 keV 22

2+
K=0 band 831 keV 1223 keV 47

Rγ unknown 0.17 –

Table 5.4: Our IBA Fit obtained for well-deformed 180Os with the Hamiltonian param-
eters ζ = 0.67 and χ = −0.53 corresponding to θ ≈ 36◦ and NBosons = 14.
The ratio Rγ is the same as defined in the text.

The fundamental underlying problem with the Os and W isotopes is given by the
impossibiltiy to obtain a good description both of the gamma-band and the K = 0
band in the context of the simplified IBA Hamiltonian with only two-paramters.
Thus it would be appropriate to take some further interaction term (which means
more parameters) into account, but this would to some extend spoil the simple
mapping of the nuclei into the IBA symmetry triangle. Anyhow, it is nice that the
descrption for the Gd, Dy, Er, Hf and Yb isotopes in the context of a simplified
IBA Hamiltonian works well, but this simple treatment should always be handled
with care. In nuclei like Os and W other interaction terms could be of significant
importance and must not be neglected.



Chapter 6

Summary and Outlook

In the present work we have shown a connection between the structural evolution
of well-deformed even-even rare earth nuclei within the IBA symmetry triangle and
the microscopic composition of the gamma-vibrational wave function in these nuclei.
The relevant two quasi-particle components contributing to the vibration were de-
termined in the framework of the Random Phase Approximation (RPA) based on
the single-particle structure of the Nilsson model. The pairing residual interaction
was also taken into account leading to a more complex ground-state with partial
occupancies of levels around the Fermi surface and leading to the substitution of
two quasi-particle excitations for particle-hole excitations.
It was possible to understand the evolution of the isotopic chains in the IBA triangle
for different nuclei qualitatively on the basis of the gamma correlation function Γ
and even quantitatively by additionally taking the R22 energy ratio into account
(equation (5.3)).
Although the theoretical basis for equation (5.3) could not be derived, it was suc-
cessfully applied to the Gd, Dy, Er, Hf and Yb isotopic chains showing that there is
certainly an underlying relation between the evolution in the IBA symmtery triangle
and the microscopical content of the gamma-vibrational wave function. Even with-
out this analytical expansion, the relation between the two pictures is quite obvious.
For Os and W the predicted values of the angle θ do not coincide with recent IBA
fits [17]. This discrepancy is related to the fact that the IBA parameters used in
these Os and W fits were not able to reproduce the gamma-band accurately. At
least for the Os isotopes it was possible to show with further IBA fits determined
in the present work that the gamma-band is much better reproduced for the angle
θ predicted by equation (5.3).

In further investigations the crude approach of the present work should be refined by
reducing the numerous simplifications. For example, if additionally the many small
components of the wave function as well as the Coriolis Interaction were taken into
account, our model would provide the possibility to calculate reduced transition
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probabilities. This would be a decisive progress in the predictive power of the
model. It could also be interesting to make additional calculations for further nuclei
in the quasiparticle-phonon nuclear model (QPNM) [23] used by Soloviev et al. and
compare the results with our predictions to continue the verification of our approach.
There is no reason why our model should be restricted only to the rare-earth nuclei.
An application to other deformed areas, e.g. in the transuranic region, is conceivable.

In most nuclei our calculations tend to a dominance of the neutrons. In some cases
the neutron fraction of the wave function is extremely large e.g. for the neutron
rich Sm isotopes or in 178Hf (the neutrons make up ≈ 80 percent of the wavefunc-
tion). For those nuclei one could think of experiments to confirm these predictions.
As already mentioned, the neutron dominance could lead to strong M1 transitions
from the 2+

γ state to the 2+
1 state. A further reasonable experiment could be the

measurement of the g-factor for those isotopes which is sensitive to the neutron and
proton compositon of the wavefunction.
In order to get a direct insight into the two quasi-particle content of the gamma-
vibration it is possible to determine the states of major importance to the wave
function in single nucleon transfer reactions. This method is capable to deliver de-
tailed information about the relative amplitudes of the contributing states. These
experiments have been done for a number of nuclei, see for example Ref. [25, 26].
Further experiments may help to test our predictions.



Appendix A

Data tables for the rare earth
nuclei

N 90 92 94 96 98

β2 0,243 0,270 0,279 0,279 0,290

E2+

1

121,8 82,0 75,9 72,8 70,9

E4+

1

366,5 266,8 249,7 240,3 233,3

E2+
γ

1085,9 1440,1 1441,0 1441,0a 1441,0a

R4/2 3,01 3,25 3,29 3,30 3,29

R2/2 8,92 17,56 18,99 19,79 20,32

Table A.1: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for Sm isotopes.a indicates that no experimental data is avail-

able for these states. Therefore we use the know value for 156Sm. All experi-
mental values are taken from the National Nuclear Data Center [34] and the
Raman compilation [29], respectively.
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N 88 90 92 94 96 98

β2 0,207 0,243 0,271 0,271 0,280 0,291

E2+

1

344,3 123,1 89,0 79,5 75,3 72,1

E4+

1

755,4 380,0 288,2 261,5 248,5 237,3

E2+
γ

1109,2 996,3 1154,2 1187,1 988,4 864,0

R4/2 2,19 3,09 3,24 3,29 3,30 3,29

R2/2 3,22 8,09 12,97 14,93 13,13 11,98

Table A.2: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for Gd isotopes. All experimental values are taken from the

National Nuclear Data Center [34] and the Raman compilation [29], respec-
tively.

N 88 90 92 94 96 98 100

β2 0,207 0,235 0,262 0,272 0,281 0,292 0,293

E2+

1

334,6 137,8 98,9 86,8 80,7 73,4 76,6

E4+

1

747,0 404,2 317,1 283,8 265,7 242,2 253,5

E2+
γ

1027,1 890,5 946,3 966,2 888,2 761,8 857,2

R4/2 2,23 2,93 3,21 3,27 3,29 3,30 3,31

R2/2 3,07 6,46 9,57 11,13 11,01 10,38 11,19

Table A.3: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for Dy isotopes. All experimental values are taken from the

National Nuclear Data Center [34] and the Raman compilation [29], respec-
tively.
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N 92 94 96 98 100

β2 0,253 0,272 0,273 0,283 0,294

E2+

1

125,8 102,0 91,4 80,6 79,8

E4+

1

389,9 329,6 299,4 265,0 264,1

E2+
γ

854,4 900,7 860,3 785,9 821,2

R4/2 3,10 3,23 3,28 3,29 3,31

R2/2 6,79 8,83 9,41 9,75 10,29

Table A.4: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for Er isotopes. All experimental values are taken from the

National Nuclear Data Center [34] and the Raman compilation [29], respec-
tively.

N 92 94 96 98 100 102 104

β2 0,225 0,264 0,274 0,284 0,295 0,296 0,287

E2+

1

166,9 123,3 102,4 87,7 84,3 78,7 76,5

E4+

1

487,6 385,6 330,5 286,6 277,4 260,3 253,1

E2+
γ

798,7 853,9 932,4 983,9 1145,7 1465,9 1634,0

R4/2 2,92 3,13 3,23 3,27 3,29 3,31 3,31

R2/2 4,79 7,01 9,11 11,26 13,59 18,63 21,36

Table A.5: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for Yb isotopes. All experimental values are taken from the

National Nuclear Data Center [34] and the Raman compilation [29], respec-
tively.
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N 94 96 98 100 102 104 106

β2 0,226 0,254 0,274 0,284 0,285 0,277 0,278

E2+

1

158,5 124,0 100,8 95,2 91,0 88,4 93,2

E4+

1

470,3 385,6 322,0 309,2 297,4 290,2 306,6

E2+
γ

810,1 875,4 961,3 1075,3 1226,8 1341,3 1174,6

R4/2 2,97 3,11 3,19 3,25 3,27 3,28 3,29

R2/2 5,11 7,06 9,54 11,30 13,48 15,17 12,60

Table A.6: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for Hf isotopes. All experimental values are taken from the

National Nuclear Data Center [34] and the Raman compilation [29], respec-
tively.

N 100 102 104

β2 0,265 0,266 0,267

E2+

1

113,0 107,8 106,1

E4+

1

356,4 347,5 343,3

E2+
γ

1010,0 1040,0 1110,8

R4/2 3,15 3,22 3,24

R2/2 8,94 9,65 10,47

Table A.7: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for W isotopes. All experimental values are taken from the

National Nuclear Data Center [34] and the Raman compilation [29], respec-
tively.
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N 100 102 104

β2 0,246 0,247 0,238

E2+

1

135,1 131,6 132,1

E4+

1

395,3 397,7 408,6

E2+
γ

863,6 864,3 870,4

R4/2 2,93 3,02 3,09

R2/2 6,39 6,57 6,59

Table A.8: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for Os isotopes. All experimental values are taken from the

National Nuclear Data Center [34] and the Raman compilation [29], respec-
tively.

N 106 108 110 112 114 116 118

β2 0,224 0,198 0,180 0,149 0,153 0,143 0,130

E2+

1

163,0 191,5 265,6 295,8 316,5 328,5 355,7

E4+

1

436,0 490,3 671,0 737,0 784,6 811,3 876,9

E2+
γ

648,8 607,2 605,7 597,6 612,5 622,0 688,7

R4/2 2,67 2,56 2,53 2,49 2,48 2,47 2,47

R2/2 3,98 3,17 2,28 2,02 1,94 1,89 1,94

Table A.9: Experimental values of the ground state deformation parameter β2, the

energy levels E2+

1

, E4+

1

, E2+
γ

in keV and the energy ratios R4/2 =
E

4
+
1

E
2
+
1

,

R2/2 =
E

2
+
γ

E
2
+
1

for Pt isotopes. All experimental values are taken from the

National Nuclear Data Center [34] and the Raman compilation [29], respec-
tively.
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Appendix B

Nilsson Diagrams for neutrons and
protons
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Figure B.1: Nilsson diagram for protons and neutrons, Z, N ≤ 50, taken from the Nuclear
Data Sheets [33].
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Figure B.2: Nilsson diagram for neutrons, 50 ≤ N ≤ 82, taken from the Nuclear Data
Sheets [33].
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Figure B.3: Nilsson diagram for neutrons, 82 ≤ N ≤ 126, taken from the Nuclear Data
Sheets [33].
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Figure B.4: Nilsson diagram for neutrons, N ≥ 126, taken from the Nuclear Data Sheets
[33].
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Figure B.5: Nilsson diagram for protons, 50 ≤ Z ≤ 82, taken from the Nuclear Data
Sheets [33].
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Figure B.6: Nilsson diagram for protons, Z ≥ 82, taken from the Nuclear Data Sheets
[33].
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der mir tatkräftig bei der Gestaltung der Diplomarbeit half.

• meinen Eltern ohne die das Studium der Physik überhaupt nicht möglich gewe-
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