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Chapter 1

Introduction

In 1572 the astronomer Tycho Brahe observed a suddenly emerged, previously invisi-
ble star-like object in the sky and termed it stella nova (Latin for "new star"). In his
work he argued that a nova had to be very far away, because a nearby object should
be seen to move relative to the �xed stars. Though he had observed a supernova and
not a classical nova, the terms were considered interchangeable until the 1930s, but
today a supernova and a nova are known to be two di�erent events in our universe[3].

Nowadays a classical nova denotes a cataclysmic nuclear explosion on the sur-
face of a white dwarf in a binary star system. It is caused by the transfer of
hydrogen onto the surface of the white dwarf from a red giant or main sequence
companion. This transfer ignites and starts a thermonuclear runaway. Novae are
one of the most frequent stellar explosions. Astronomers estimate that in the Milky
Way there are roughly 30 to 60 novae per year, with a likely rate of about 40[3].
Mostly, the hydrogen burning is thermally unstable, so it rapidly converts a large
amount of the hydrogen into other heavier elements in a series of nuclear reactions.
This implies that, in classical novae outbursts, elements with a mass up to A = 40
can be built by proton capture processes. In resonant nuclear reactions that are
promoted by the physical conditions (far away from equilibrium) particular isotopes,
which are not possible to be formed within other events in the universe, are synthe-
sized and blown o� into the space. Examples for these isotopes are 7Li, 13C, 15N ,
17O and in special special cases 26Al, 32S, 33S and 35Cl[4].

Therefore, nuclear reactions in novae explosions play an important role in the
production of elements that are the basis of our existence and are necessary for the
life on earth. These resonant nuclear reactions play a leading part in the reaction
processes in novae, making them essential for the theoretical understanding and
physical models of a nova outburst.
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Chapter 1 Introduction

One of the important properties characterizing resonant reaction rates are the life
times of exited states in compound nuclei formed by proton capture. An applicable
experimental technique to determine these life times is the so-called Doppler shift
attenuation method (DSAM) which has been successfully used to measure life times
of excited nuclear states between around 10−14 and 10−11s. The central idea of this
method is the analysis of the Doppler shift that can be detected in the gamma ray
spectrum of the decays of ions that are produced in excited states and immediately
decelerated rapidly in a heavy target material.

The purpose of the DSAM experimental facility that is set up by the experi-
mental astrophysics group at the Maier-Leibniz-Laboratory (MLL) located on the
Garching campus of the Technische Universität München is to measure the life times
of the excited states in proton rich nuclei of masses that range between A = 20
and A = 40. At the laboratory there is a Van-de-Graa� tandem accelerator that
achieves a maximum operating potential of 14 MV. The accelerator's ion beam is
used for producing excited nuclei of astrophysical interest in an implantation layer
of the target and stopping this nucleus within the target itself. The Doppler shifted
gamma ray spectrum is recorded applying three high purity germanium (HPGe)
gamma ray detectors. Furthermore, coincidence measurements with light ejectiles
and the de-excitation γ-rays are done with the help of a silicon detector ∆E − E
telescope.

Within the frame of this bachelor's thesis the three HPGe detectors, positioned
at di�erent angles around the target chamber, are calibrated and characterized as it
is necessary for the usage within the DSAM experiment, particularly for the precise
analysis of the gamma ray spectra. For each of the three detectors the Photopeaks
of overall three di�erent sources of radiation are �tted by a complex mathematical
function in order to determine the response function, the Photopeak e�ciency and
the intrinsic e�ciency dependent on the energy. Furthermore, an energy calibration
for the three detectors is performed.
In Chapter two initially the theoretical fundamentals of resonant reaction rates,
the general basics of the DSAM experiment as well as general considerations about
HPGe detectors are described.
The applied methods of the characterization and the approach to the calibration of
the three HPGe detectors are presented in chapter 3 and the measurement results
are analyzed.
In chapter 4 the thesis is concluded with a brief summary of the results and an
outlook to a further use of the data is provided.
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Chapter 2

Basics

2.1 Nuclear Reaction Rates in Novae

In this section will present some basic physical principles of thermonuclear resonant
reaction rates.

2.1.1 Kinematics and Energetics

Particle a strikes a nucleus X producing the nucleus Y and the particle b. This
reaction can be typi�ed by

a+X → Y + b (2.1)

An alternative notation in common usage is

X (a, b)Y (2.2)

In such a nuclear reaction the total energy, the angular momentum and also the
momentum are conserved quantities. As well-known from classical mechanics, the
total energy or momentum of the system is expressed as the energy or momentum
of the motion of the center-of-mass system (CMS) plus the sum of the energy or
momentum in the CMS. For particles a and X with masses ma and mX and non-
relativistic velocities va and vX , the velocity of the CMS is given by

V =
mava +mXvX
ma +mX

(2.3)

In the CMS the so called reduced mass is given by

µ =
mamX

ma +mX
(2.4)

and the relative velocity v between particle a and X is

v = va − vX (2.5)

3



Chapter 2 Basics

Because in the CMS the total momentum is zero, particles a and X have equal but
opposite momenta. So we demand that the total momentum is zero also after the
collision. The kinetic energy before the collision is given by

ECM =
1

2
mav

2
a +

1

2
mXv

2
X (2.6)

which can be written also as

ECM =
1

2
(ma +mX)V 2 +

1

2
µv2 (2.7)

The �rst term in the equation above gives us the kinetic energy of the Center of
mass itself; the second term is called the kinetic energy in the CMS. In our reaction
the principle of conservation-of-energy counts, which is expressed in the following
formula:

Ea + EX + (Ma +MX) c2 = Eb + EY + (Mb +MY ) c2 (2.8)

which is the Einstein mass-energy relationship[5].

2.1.2 Cross Section and Reaction Rate

The energy-balance equation yields the energy that is liberated by each nuclear reac-
tion. The concept of the cross section is used to express the likelihood of interaction
between particles. We can de�ne it as

σ =
Number of reactions per nucleus per unit time

Number of incident particles per square centimeter and unit time
(2.9)

The reaction rate between two particles can be written as

r = σ (v) vNaNX (2.10)

where v is the relative velocity between the two particles and Na and NX are their
particle number densities.

Generalizing equation (2.10), the reaction rate for a distribution of relative ve-
locities is

raX = NaNX 〈σv〉aX (2.11)

where 〈σv〉aX is the reaction rate per particle pair.

4



2.1 Nuclear Reaction Rates in Novae

The relative velocity can be described by a Maxwell-Boltzmann distribution and is
theoretically distributed between zero and in�nity. This velocity distribution has a
maximum at vm =

√
2kT/µ, which corresponds to an energy of E = kT .

For the reaction rate per particle pair one obtains[4]

〈σv〉aX =

(
8

πµ

)1/2 1

(kT )3/2

∞∫
0

E σ (E) e−E/kTdE (2.12)

where T is the temperature, µ is the reduced mass and k is the Boltzmann constant.

On the reaction cross section there is set a upper bound by the quantum me-
chanical scattering theory: The 'geometrical factor', πλ2, with the De Broglie
wavelength

λ =
h

p
=

2π

k
(2.13)

where k is the wave number and p the momentum of the particle. The geometrical
factor depends on the energy as:

πλ2 ∼
(

1

p

)
∼ 1

E
(2.14)

The factor intends to describe the incident particle wave function and the outgoing
scattered wave [5].

2.1.3 Compound Nuclear States

As well-known, nucleons cluster into bound states with a discrete energy and a
quantized angular momentum that is composed of the orbital and the spin momenta
of the constituent nucleons. As we know from atoms, states are not quite stationary
because of interactions leading to transitions between the single states. Each state
has a width in energy given by

Γ =
h̄

τ
(2.15)

and a energy pro�le

P (E) =
h̄

2πτ

1

(E − Ei)2 +
(
h̄
2τ

)2 (2.16)

where τ is the mean lifetime of the decaying state.

5



Chapter 2 Basics

If the lifetime of a state is long enough the state's width Γ is su�ciently small
(compared to the energy di�erence between the states) so we can use approxima-
tions of stationary energy eigenstates[5]. The nuclear shell model is one of the most
successful for the interpretation of nuclear states.
Certain nuclear reactions between two particles (e.g. nuclei) A and B can go through
a excited state of a compound nucleus Y ∗, so think of the reaction above

a+X → Y ∗ → Y + b (2.17)

Notably Y ∗ has precisely de�ned nuclear orbitals which can be populated by the
reaction.
A resonance in a nucleus can occur if the combination of the quantum numbers
of the particles a and X �ts properly to those which are necessary to build the
compound nucleus in one of its natural (excited) states above the threshold energy
of the reaction, the so-called Q value. Or in other words, the relative kinetic energy
of the particles at in�nity must be just such that this energy equals that of the
populated quasi-stationary state in the compound nucleus.

Because energy and momentum have to be conserved in the formation of the
excited state, the sum of the kinetic energy of the particles a and X in the center-
of-mass system (so the relative energy) must be identical to the resonance energy
Eres of an excited state of the nucleus, so[5]

ECM = Eres =
1

2
µv2 (2.18)

Thus the Q value accrues from

ECM = E∗C −Q (2.19)

where E∗C is the excitation energy of the excited state C∗. Consequently the minimal
excitation energy E∗C,min is equal to the Q value:

E∗C,min = Q (2.20)

Additionally, the angular momentum also has to be conserved which means that

~J = ~Ja + ~Jx +~l (2.21)

is required. ~l is the orbital angular momentum of a and X, J is the angular momen-
tum of the excited state that is supposed to be occupied and Ja and Jb are the spins
of the nuclei[5].
Furthermore, the number of possible resonances into which capture is allowed is
limited by the fact that parity must be conserved as well:

π (C∗) = π (a)π (X) (−1)l (2.22)

where l is the relative angular momentum of a and X.

6



2.1 Nuclear Reaction Rates in Novae

2.1.4 The Resonant Reaction Rate

Normally, the stellar reaction rate is dominated by the quasi-stationary states in the
compound nuclei (resonances) because their cross sections are much greater than
non-resonant direct capture. The cross section of the net reaction from a and X to
b and Y is dependent on the quantity of di�erent decay channels for the compound
nucleus C, and the probability that C decays into the desired decay channel.
According to quantum mechanics, the maximum value of the l-wave reaction cross
section is[5]

σr,l (max) = (2l + 1)πλ
2

(2.23)

where πλ
2
is the de Broglie geometrical cross section.

Referring to the decay channel 1, the partial width of C is de�ned as

Γ1 =
h̄

τ1
(2.24)

with the lifetime τ1 of the excited state in C referred to the decay channel 1.
This equation can be regarded as a expression of the principle of uncertainty: The
uncertainty of the state's life time (uncertainty in time) multiplied by the width of
the state (uncertainty in energy) has to be smaller or at most equal to h̄. The full
decay width Γ of an excited state with di�erent decay channels 1,2,3,... is

Γ = Γ1 + Γ2 + Γ3 + . . . (2.25)

Regarding a state that can decay by just two channels Γ1 and Γ2, the total resonant
cross section is proportional to the factor

σres ∝ Γ1 · (Γ− Γ1) (2.26)

The total width is linked to the circumstance that the energy of the state is unde�ned
whereas the probability that the state has the energy E is given by equation (2.16).
The probability is also proportional to the rate of building the state with particles
of energy E. Additionally, being induced by particle 1, the cross section has to be
proportional to Γ1. Therefore the cross section of a resonant reaction (E = Eres) has
to be proportional to

σres ∝ Γ1 · (Γ− Γ1)P (Eres) (2.27)

where P (Eres) is given by equation (2.16).
Because the maximum value of the factors in equation (2.26) is unity, we have to
multiply these factors by the maximum value of the reaction cross section. Therefore
the cross section of the reaction for the l-partial-wave is[5]

σres,l = (2l + 1)πλ
2 Γ1 (Γ− Γ1)

(E − Eres)2 +
(

Γ
2

)2 (2.28)

7



Chapter 2 Basics

The (Γ− Γ1) stands for the sum of all partial widths of the decay channels di�erent
from the one which formed this state. Finally, one gets the reaction cross section for
the products b+ Y (in the reaction a+X → C∗ → b+ Y ) by using just the partial
width for that channel:

σres,l (a, b) = (2l + 1)πλ
2 ΓaΓb

(E − Eres)2 +
(

Γ
2

)2 (2.29)

This equation is called the single level Breit-Wigner formula[5].
However, it does not yet take the spin of the particles into account. Each spin state J
is in accordance with (2J + 1) orbital sub-states; every state has a magnetic orbital
number m that goes from −J to J . In general two particles 1 and 2 have a total
number of (2J1 + 1)× (2J2 + 1) potential sub-states.
But the angular momentum in C is known, so there are just (2J + 1) sub-states
available in C. Thus, for the Breit-Wigner formula one can write more generally
with a spin statistical factor

σres,l (1, 2) = ωπλ
2 Γ1Γ2

(E − Eres)2 +
(

Γ
2

)2 (2.30)

with

ω =
(2J + 1)

(2J1 + 1) · (2J2 + 1)
(2.31)

The reaction rates for a single narrow resonance can be calculated by the usage of
equations (2.12) and (2.30) [4],

NA 〈σv〉 = NA

√
2πh̄2

(µkT )3/2
ω

∞∫
0

Γ1Γ2

(E − Eres)2 +
(

Γ
2

)2 e−E/kTdE (2.32)

where NA is the Avogadro constant.

For a su�ciently narrow resonance, the partial widths and the Maxwell-Boltzmann
factor are almost constant over the total width of the resonance. They can be
replaced by their value at Eres and the integral can be calculated analytically.
According to this [4]

NA 〈σv〉 = NA

(
2π

µkT

)3/2

h̄2 e−Eres/kT ωγ (2.33)

where ωγ = ω Γ1Γ2/Γ is used.

8
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The resonant reaction rates are highly important in classical novae explosions,
where resonant proton captures enhance nucleosynthesis. The actual good theoret-
ical knowledge of the resonant proton capture rates on di�erent nuclei results from
the science of the properties of compound nucleus for resonant reactions: the partial
widths of the excited state formed in the reaction, the energy of that state and the
spin. The partial widths of an excited state can determined by measuring the life
time of that state, because these two quantities are connected by equation (2.22)[2].

2.2 The Doppler Shift Attenuation Experiment

In the following section I will describe an experimental facility at the TU München
for measuring the life times of excited nuclear states which aims to get better models
of resonant reaction rates.

2.2.1 Motivation

Reactions in nova explosions involve proton capture into excited nuclear states of
the compound nucleus thereby formed. As a example, one can think of the following
reaction:

X + p→ Y ∗ → Y + γ (2.34)

where the asterisk expresses that nucleus Y is created in an excited nuclear state,
which then almost instantly de-excites by gamma-ray emission, to the ground state
of Y .

The purpose of the experiment that is set up by the experimental astrophysics
group of the Institute E12 at the Technische Universität München is to determine
the rates of these kinds of reactions, under physical conditions within nova explo-
sions. Therefore it is essential to measure the life times of the excited nuclear states.
This is done by using the Doppler shift attenuation method (DSAM).
The experimental facility is constructed at the Maier-Leibniz-Laboratory (MLL)
located on the Garching campus of the Technische Universität München. At the
laboratory there is a Van-de-Graa� tandem accelerator that achieves a maximum
operating potential of 14 MV, and is able to accelerate stable beams ranging in mass
from protons up to the actinide elements.

With a better knowledge of the life times of excited nuclear states, the theo-
retical models and predictions on the nucleosynthesis in nova explosions can be
improved.
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2.2.2 Experimental Method

The basic principle of the DSAM has been used successfully since the 1960's. It is
used to determine life times ranging from 10−14 to 10−11 seconds[6].
In the experiment, the excited states of astrophysical interest in Y are created with
a transfer reaction, schematically represented as:

Z + a→ Y ∗ + b (2.35)

where Z is the accelerated ion and the nucleus a, can be a deuteron, 3He, or an α
particle. Y ∗ is excited into one of its astrophysically important states, and nucleus
b called the transfer ejectile; again it is a particle, such as a proton, deuteron, 3He,
or an α particle (with a and b being di�erent).
By measuring the ejectile particle b in coincidence with the gamma-rays from Y ∗,
the lifetime of the excited nuclear states can be determined, as will be explained
shortly.

A target foil with high stopping power (e.g. gold) is implanted with the light
target nuclei (particle a in the reaction above), such as 3He or α particles. The gold
foil has a thickness of about 15 microns and only the �rst 0.5 microns are implanted
with the light nuclei 3He at a density of about 4× 1017 atoms

cm2 .

A beam of accelerated nuclei from the tandem accelerator at the MLL is di-
rected onto the target foil and transfer reactions between the nuclei of the beam and
the implanted nuclei happen. When this occurs, the nucleus Y in one of its excited
states is produced somewhere in the �rst 0.5 microns of the target foil, along with
the light ejectile particle b.

Making use of the two-body kinematics of the reaction, the populated excited state
can be reconstructed by measuring the energy and the angle δ of the light ejectile.
Figure 2.1 contains a sketch of the reaction process.

The excited nuclear state has a �nite lifetime, though very short. The excited
nucleus Y ∗ decays via gamma-ray emission while in motion and while slowing down
in the target material. The gamma-rays will be Doppler shifted, because Y ∗ decayed
while moving. Nevertheless, not every nucleus Y ∗ created in the experiment will
decay with the same velocity, (or at the same time after being created) and therefore
each has a di�erent Doppler energy shift. The reason for this is that the probability
that the excited state decays in a speci�c time interval has a decaying exponential
time distribution. This is why not every Y ∗nucleus decays at exactly the same time
after being created.
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Figure 2.1: Schematic display of the DSAM reaction principle. Not to scale.

If the velocity β = v
c of Y ∗ is signi�cantly smaller than one, the following equation

applies for the Doppler shifted γ-ray energy [7]:

Eγ = E0
γ [1 + F (τ)βθ (0) cos Θ] (2.36)

where Eγ is the γ ray energy (measured), E0
γ is the rest frame γ ray energy, F (τ)

is the so-called attenuation coe�cient that lies between 0 and 1, βθ (0) is the initial
velocity of Y ∗ at the time of creation and Θ is the γ-ray's angle of emission relative
to the initial direction of Y ∗ at the moment of decay.
This equation now can be rearranged, to be,

Eγ − E0
γ

E0
γ

= F (τ)βθ (0) cos Θ (2.37)

showing that the measured γ-ray distribution is related to the velocity distribution
of the decaying nuclei. Knowing the stopping power of the target material for the
considered nucleus, which gives us βθ (t) cos θ,almost the projected velocity distribu-
tion of this nucleus in the beam axis's direction.
Now, one can combine the decay exponential probability of Y ∗ and the velocity
distribution to get the velocity distribution at the time of decay [7]:

F (τ)βθ (0) =
1

τ

∞∫
0

βθ (t) exp

(
− t
τ

)
dt (2.38)
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This is the ideal representation for F (τ). However, this F (τ) must be convolved
with the detector response function, which has a gaussian shape, as the measured
Egamma is not an exact energy value, but a energy distribution.

So as to be able to compare a Doppler shifted and a non-Doppler shifted gamma-ray
spectrum, there are used three germanium detectors that are positioned in three
di�erent angles referring to the beam axis's direction.

Finally, the life time of the excited state can be obtained from this �t function
with respect to τ [7].

2.2.3 Experimental Setup

The Doppler shift life time facility comprises a target chamber into which a copper
target ladder constructed with 6 target holders is mounted. For beam diagnostics,
a scintillation crystal is attached to the supreme target holder. It is used for tuning
the beam onto the target. Furthermore, there is a movable mounting base for up to
3 silicon charged particle detectors placed in the target chamber.

Upstream of the target ladder is a copper tube of about 45 cm length that is
concentrically oriented along the beam axis and extends to the target position. The
tube is also in thermal contact with a liquid nitrogen (LN2) reservoir. The end of
the tube that extends to the target has a copper block to which are a�xed two
copper leaf springs. These come into (thermal) contact with the target ladder, when
the target ladder is raised into position.

Figure 2.2 shows a CAD rendering of the entire experimental setup.
The whole system can be pumped down to ∼ 10−7mbar. After the pressure in the
system has dropped to this value with the aid of turbo pumps, the copper tube
is cooled with LN2. This cooling of the tube e�ects adsorption of any remaining
residual gas molecules onto its surfaces and improves the vacuum ("cold trap")
inside the target chamber and the beam line. The target ladder at this time is
elevated so that there is no thermal contact to the copper tube.

The target is cooled to avert di�usion of the implanted 3He due to beam heat-
ing. Moreover, the target is raised into contact with the copper tube after su�cient
time has passed to adsorb residual gas molecules upon the copper tube.

This is necessary to avoid contaminants on the surface of the targets that could
otherwise react with the beam and be a potential source of unwanted background.
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Figure 2.2: CAD rendering of the DSAM facility. Experiment design and visualiza-
tion by Clemens Herlitzius.

Outside the target chamber the three germanium gamma-ray detectors are situated.
Figure 2.3 shows a view from the top looking directly into the target chamber.

On the left side one can see the copper tube entering the target chamber and
the copper block at the very end. Next, directly right of the copper block there is
the target ladder.

On the right side of the target ladder, one sees the three mounting frames that
hold the silicon detectors. With these monolithic detectors of di�erent thickness,
charged particles can be detected and their energy and position can be determined.
The detectors form a position sensitive ∆E − E telescope with which the type of
ejectile particle (proton, 3He, α, etc.) can be identi�ed and its energy and the
scattering angle can be reconstructed.

As explained in this section, in the DSAM experiment the precise shape of the
Doppler shifted γ ray spectrum provides the means to determine the life times
of excited nuclear states. For that reason, good detection e�ciency and a good
knowledge of the detector response function is required.
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Figure 2.3: A view looking down into the target chamber, showing all essential parts.

2.3 High Purity Germanium Gamma-Ray Detectors

2.3.1 General Considerations

In semiconductor detectors, radiation is measured by collection of charge carriers set
free in the detector, which is arranged between two electrodes. Radiation generates
free electrons and holes. The energy transmitted to the detector is proportional to
the number of electron-hole pairs in the semiconductor. A number of electrons are
moved from the valence band to the conduction band, and conversely the same num-
ber of holes is created in the valence band. Under the in�uence of an electric �eld,
the charge carriers travel to the (opposite) electrodes, where they trigger a pulse
that can be measured in an outer circuit. The amount of energy that is necessary to
create an electron-hole pair is proportional to the energy of the incoming radiation,
so measuring the number of electron-hole pairs allows determining the energy of the
incident radiation.

Compared with gaseous ionization detectors, the density of a semiconductor detector
is very high, so charged particles of high energy can give o� their total energy in a
semiconductor of relatively small dimensions. In contrast to silicon detectors that
cannot be thicker than a few millimeters, germanium can be used as a total absorp-
tion detector for gamma rays up to few MeV because of their greater depletion depth.
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With increasing applied bias voltage, higher depletion depths can just be real-
ized by reducing the net impurity concentration in the semiconductor material.
With special re�ning techniques one can achieve an impurity concentration that is
correlated to levels which are less than 1 part in 1012. Detectors that achieve these
levels are called high purity germanium (HPGe) detectors or intrinsic Detectors.
They can have depletion depths up to several centimeters.

A handicap of Germanium detectors is that they have to be cooled to liquid
nitrogen temperatures to produce spectroscopic data. At higher temperatures, the
electrons can easily cross the Band gap in the crystal and reach the conduction
band, where they are free to respond to the electric �eld. This reduces energy
resolution. Cooling to liquid nitrogen temperature (77 K, but allowed to be some-
what higher) reduces thermal excitations of valence electrons so that only a gamma
ray interaction can give an electron the required energy to reach the conduction band.

2.3.2 Coaxial Con�guration

For planar detectors, the total germanium volume is limited. For producing detec-
tors with larger volume as one prefers for gamma ray spectroscopy, detectors of a
so-called coaxial geometry are chosen. One electrode is located at the outer surface
of the cylindrical germanium crystal and the second electrode is constituted by re-
moving the core of the cylinder and attaching a contact over the inner surface of the
crystal. In combination with an elongated fabricated crystal this makes it possible
to achieve large active volumes. Moreover, detectors with a coaxial con�guration can
be fabricated with lower capacitance than would be possible with planar geometry [1].

In the case of the so-called closed-ended coaxial con�guration only the central
core of the crystal is removed, so the outer electrode is extended over the one �at
end of the crystal. This avoids the complications because of leakage currents at the
front surface and provides a �at surface in the front that can be used as na entrance
window for weakly penetrating radiation if a electrical contact is used.
In coaxial geometry it does not matter if the rectifying contact, which builds up the
semiconductor junction, is placed at the outer or the inner surface of the detector.
With the rectifying contact being placed at the outer surface, the depletion region
moves inwards if the voltage is raised and it reaches the surface of the inner hole
at depletion voltage. If the rectifying junction is on the inner surface, the depletion
layer increases outwards but in this case one requires a much larger voltage to
deplete the whole detector. Therefore the rectifying junction usually is placed at
the outer surface.
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Coaxial detectors with a central n+ contact are called n-type detectors, while
p-type detectors have a p+ central contact. The thickness of these contacts repre-
sents a dead layer around the surface of the crystal within which energy depositions
do not result in detector signals. A schematic comparsion of the n-type closed-ended
and the more common p-type closed-ended HPGe is shown in �gure 2.4

Figure 2.4: Schematic display of the positions of the electrodes and the directions
into which holes and electrons are drifting in a coaxial HPGe detector of p- and
n-type con�guration. Source: [1]

The capacitance per unit length of a fully depleted true coaxial detector is given by

C =
2πε

ln (r2/r1)
(2.39)

whith the dielectric constant ε and with inner and outer radii r1 and r2[1]. Usually
a minimal capacitance is preferred, so the inner radius r1 is kept to a technical
minimum.

2.3.3 Gamma Ray Spectroscopy

Good germanium detector systems have an energy resolution that is typically of a
few tenths of a percent in comparison to 5-10% for sodium iodide scintillators. In
consequence of this better resolution and the lower atomic number of the germanium
detector, the photopeak e�ciencies are perceptibly lower than typically. But the
superior energy resolution that helps discriminate closely spaced peaks and the
better detection of weak sources of discrete energies prevail this drawback.
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That is why germanium detectors are de�nitely preferred for analyzing complex
gamma ray spectra with a lot of peaks[1].

Evident in a gamma ray spectrum are typically X-rays from photoelectric ab-
sorptions, the backscatter peak, rudimentarily noticeable single escape (SE) and
double escape (DE) peaks from pair production, the annihilation peak at 511 keV,
the Compton edges and full-energy peaks from primary gamma rays, a sum peak
due to the full absorption of both primary gamma rays and two small pile-up peaks.
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Chapter 3

Characterization of the HPGe

Detectors

In this chapter, I will present my best �t functions, energy calibration and e�ciency
measurements for the three HPGe detectors that are used in the experiment, for the
γ-ray sources 22Na, 60Co and 207Bi.

3.1 Description of the three HPGe Detectors

There are three HPGe detectors used in the experiment.

The �rst one is a closed-ended coaxial detector produced by Canberra.
It has an n-type con�guration (negative electrode is on the lateral surface of the
core hole), where the two electrodes are realized by dopant implementation. It is
positioned at an angle of 60◦ relative to the beam axis' direction.

Figure 3.1 shows schematically the detector geometry. The germanium crystal
has a speci�ed length of 78.5 mm, the diameter is 79 mm, the core hole has a depth
of 66 mm and a diameter of 13.5 mm.[8] The thickness of the outer electrode is 0.3
µm and the thickness of the inner electrode is 0.6 mm[8].

The crystal is placed inside of a 16 cm long aluminum cryostat of 1.5 mm thickness
with an outer (measured) diameter of 9.52 cm. It is open to one side with a carbon
epoxy window of 0.5 mm thickness and a measured diameter of 9 cm[8].

All quantities except of the ones that are speci�ed as "measured" are taken from
the Canberra data sheet of the detector[8].

The two other detectors are produced by ORTEC. The detectors have a speci�ed
length of 178 mm and the diameter is 90 mm.

19



Chapter 3 Characterization of the HPGe Detectors

Figure 3.1: Schematic display of the germanium crystal of the detector, the core hole
and the aluminium cryostat inclusive. Not to scale. Source: [2]

The one detector is positioned in an angle of 0◦ relative to the beam axis' di-
rection (Model No.: GMX-90220-S ; Serial No.: 33-N40483A) an the second detector
is positioned in an angle of 90◦ relative to the beam axis' direction (Model No.:
GMX-90220-S ; Serial No.: 37-N31120A).

3.2 Method of �tting the Data

For the �tting method of the gamma ray spectra, the data analysis program and li-
brary ROOT developed by CERN was used. Macro scripts used by ROOT have been
written for automating the process of characterization of HPGe gamma ray detectors.

Together with the gamma ray spectra, background spectra with a total runtime
of 16 hours have been recorded and considered in the analysis. In the background
spectra, there are peaks visible in the range of the photopeaks of the gamma ray
spectra. However, these little peaks can be neglected in respect to the following
equation, which is the ratio of their respective rates:

∆Hbg

∆Hs
· ∆ts

∆tbg
(3.1)

where ∆Hbg and ∆Hs are the peak heights of the background peak and the photo-
peak and ∆tbg and ∆ts are the respective runtimes of the data recording.
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As an example, the high energy peak of 60Co, which is shown in �gure 3.6, and the
respective background spectrum, which is shown in �gure 3.7, can be considered.
In this case the ratio given by equation (3.1) has a value of 0.007%. That is why the
analyzed spectra have not been background subtracted. The e�ect of the background
peaks on the shape of the phtopeaks is negligible.

The physics and the statistics that determine the response of a germanium de-
tector to a gamma ray source are complex, so a precise calculation of full-energy
peak shapes is relatively di�cult. A theoretical function is �tted to the full-energy
peak experimental data points to represent the detector response near a full-energy
peak. The function consists of a combination of �ve di�erent functions. They repre-
sent a Gaussian that covers most of the full energy peak, a low energy exponential, a
high energy exponential, a step function and a polynomial to express the background:

1. In the case of an ideal detector, a gamma ray with a negligible natural width
would behave as a sharp, delta peak shaped response function. As a �rst term of the
�t function, the totally absorbed component of a single peak has to be represented
by a Gaussian, because that sharp delta line is broadened by the statistical nature of
system noise and by the electric noise caused by the charge collection process:[9]-[10]

RGaussian = A exp

(
−
(
x− x0

δ

)2
)

(3.2)

where A is the amplitude, x0 ist the position of the maximum of the photopeak and
δ is the width of the peak.

2. Due to the incomplete charge collection and pile-up inside of the detector
as well as electron escape, the Gaussian shape is distorted on its low energy tail,
which means that in an ideal detector an exponentially decaying distribution on the
low energy side of the peak is produced. That has to be folded with a Gaussian
function accounting noise, thus providing a smooth cut-o�. This results in a peak
that has a roughly Gaussian shape but distorted or broadened on the low energy
side of the peak[10]:

Rlefttail = B exp

(
x− x0

β

)
erfc

x− x0 + γ2

2β

γ

 (3.3)

where B is the amplitude of this contribution to the peak, erfc is the normalized
complimentary error function, β de�nes the slope of the exponential distribution
and γ is the slope of the complimentary error function, the so-called noise width.
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3. Additionally, n-type HPGe detectors usually have also a "tail" on the high
energy side of the peak (because of surface e�ects), which is similar to the one
on the low energy side that is created by incomplete charge collection. The term
representing this e�ect is again folded by a negative exponential function with a
Gaussian shape[11]:

Rrighttail = C exp

(
x− x0

κ

)
erfc

(
−
x− x0 + τ2

2κ

τ

)
(3.4)

where C is the amplitude, κ de�nes the slope of the exponential distribution and τ
is the slope of erfc.

4. If the gamma rays have an energy more than about 2 MeV, pair-production plays
an important role in the energy transfer to the detector. As a consequence, positron
annihilation is resulting in two 511 keV gamma rays, where one or both of them can
escape from the detector. Hence a source of single-energy gamma rays produces a
full energy peak, a single-escape (peak 511 keV lower in energy) and a double-escape
peak (1022 keV lower in energy). All of these have more or less di�erent peak shapes.

Furthermore, the annihilation gamma ray is able to Compton scatter in the de-
tector with an energy that is adding up to the escape peaks. Such summing e�ects
generate a step or unsteadiness in the background below or above the peak. Like-
wise for low-energy gamma ray, a considerable step or ledge below the peak can be
produced by Compton scattering from surrounding materials into the detector[12]:

Rstep = D erfc

(
x− x0

σ

)
(3.5)

where σ is the width and D is the amplitude that is usually set by subtracting the
average hight of the background on the left side an the right side of the peak.
The choice of the step and the tailing have a signi�cant e�ect on the goodness of
the �t[9].

5. In a �nal step, the background term for the background continuum on both
sides of the peak is presented by a polynomial of �rst or second order:

Rpolynomial = a+ b (x− x0) + c (x− x0)2 (3.6)

Terms 3 and 4, added with term 5, reveal a background with a sharp step at the
peak and which decreases slowly below the peak.
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Anyway, the variation of the background can be represented by a polynomial
of suitable order and a step in the background about the peak channel, which is
extending to the low energy side produced by the full-energy peak itself.

The analysis software ROOT can vary the height, the position and the width
of the composite shape, as well as the background parameters. A peak area must
be de�ned, so just the part of the spectrum within this range is going to be �tted[13].

The �nal function has a number of 15 parameters that must be varied to get
the best �t function. The complete �nal �tting function is presented in appendix A.

It is a challenging task but it can be greatly simpli�ed by choosing a good ini-
tial value for the parameters as a starting point for the optimization method. The �t
of the peak is accomplished by the non-linear least squares method that searches the
values of the �t parameters that minimize the sum of the squares of the deviations
of the data (the residuals)from the �t function F (x). The Chi-Square value

χ2 =
∑
i

1

ndf
[yi − F (xi)] (3.7)

is minimized, where xi is the channel number, yi the experimental data point and
ndf is overall weighting factor given by the number of degrees of freedom in the
�t, which is equal to the number of data channels included in the �t minus the
number of free parameters. F (xi) values are determined from the �t function. The
summation is accomplished over all the data point that are involved in the �t[9]-[11].

The characterization of the three HPGe detectors were accomplished by the us-
age of three di�erent radioactive sources. Table 3.1 gives an overview of the used
sources, the energies of those gamma ray lines that have an emission yield high
enough for detection, their emission e�ciencies and the associated source activities.

The complete spectra obtained for the three sources are presented in Figures 3.2,
3.3 and 3.4.
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Source Gamma Energy [keV] Emission Probability Source activity [kBq]
22Na 1274.5 99.94% 61.80
207Bi 569.7 97.75% 25.17
207Bi 1063.7 74.50% 25.17
60Co 1173 99.85% 154.30
60Co 1332 99.98% 154.30

Table 3.1: Gamma sources used in the analysis, their gamma energies siutable for
e�ciency measurements, their emission probabilities and their activities.

Figure 3.2: A spectrum of the gamma ray emission from the 60Co source. This
spectrum contains about 15 minutes of data.

24



3.2 Method of �tting the Data

Figure 3.3: A spectrum of the gamma ray emission from the 207Bi source. This
spectrum contains about 40 minutes of data.

Figure 3.4: A spectrum of the gamma ray emission from the 22Na source. This
spectrum contains about 10 minutes of data.
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Each of the peaks in Table 3.1 has been �tted with a individual combination of
the described terms, but in most of the cases not all of the terms were necessary.
In order to decide if the �t result is satisfying and physical, the used Root script for
the �tting process has been designed in that way that the best �t function as well
as a display of the full-energy peak in the spectrum, the �tting function and all the
single components are given back. Thus, one is able to decide easily, whether the
single terms of the �tting function behave physically.

Two examples of successful �ts and their individual components can be seen in
Figures 3.5 and 3.6. The precise values of the �t parameters of all �tted peaks are
summarized in appendix A.

The �gures that contain the graphical display of all other �tted Photopeaks are
summarized in appendix B.
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Figure 3.5: Example of a data �t using the �tting function described in this chapter.
The 1173 keV photopeak of 60Co along with the best �t function and its components
for the Canberra detector. The goodness of the �t is χ2 divided by the number of
degrees of freedom = 51.66/23 = 2.25
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Figure 3.6: The 1332 keV photopeak of 60Co along with the best �t function and its
components for the Canberra detector. The goodness of the �t is χ2 divided by the
number of degrees of freedom = 41.2/28 = 1.47. This spectrum contains about 12
minutes of data.

Figure 3.7: Background spectrum for the 1332 keV photopeak of 60Co detected by
the Canberra detector. This spectrum contains about 16 hours of data.
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3.3 Results

In this section, I will present the results of the determination of the photopeak
e�ciency and the intrinsic e�ciency as well as the determined energy calibration for
the three detectors.

3.3.1 E�ciency

3.3.1.1 De�nition

There are di�erent possibilities for gamma rays entering the detector to deposit
their energy: via photoelectric absorption, Compton scattering and pair production.
It is dependent on the energy of the entering gamma as well as the material of the
detector, which of those three processes is dominating within the detector. Usually
a gamma ray of energy within the range of MeV does not deposit all of its energy in
a single interaction. There can be more than one interaction between the detector
material and one speci�c gamma and as well in many cases the gamma ray will
escape from the detector without having deposited its entire energy.

Compton scattering is the most frequent form of interaction over a wide range
of energy. In this case the gamma ray contributes to the Compton continuum,
which is formed due to the circumstance that the incoming gamma can deposit any
fraction of its energy while scattering. This behavior comes up because there are all
scattering angles possible and the amount of energy loss by Compton scattering is
dependent on the scattering angle.

The Compton continuum can be seen as component of the background which
implies that the Compton continuum over higher energy peaks can overlap with the
full-energy peak of a gamma rays with less energy, particularly if there are a lot of
gamma rays from the same source.

According to the di�erent possible ways of energy deposition by gamma rays in
the detector, there di�erent kinds of characterization of a detector's e�ciency: The
intrinsic e�ciency states the probability to detect any gamma ray that is entering
the detector:

εint =
Number of detected gamma ray events

Number of gamma rays entering the detector
(3.8)

For the total e�ciency the solid angle that the detector covers referring to the source.
This total e�ciency states the probability to detect any gamma ray emitted by the
source will interact within the detector:
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εtot =
Number of detected gamma ray events

Number of gamma rays emitted by the source over 4π steradians
(3.9)

The Photopeak e�ciency states the probability that a gamma ray deposits its entire
energy within the detector:

εphoto =
Number of detected gamma ray events in the photopeak

Number of gamma rays emitted by the source over 4π steradians
(3.10)

All these e�ciencies are throughout calculated for a speci�c gamma energy that has
to be stated with the e�ciency value.

3.3.1.2 Findings

The Photopeak e�ciency for each gamma ray line is determined by the usage of the
software ROOT again.

First, the contents of all bins within the range of the peak, which has been set
manually, are integrated. Then, the integral over the background components of the
�t (polynomial term plus optionally the step) within the same range is subtracted.
The obtained number of counts is then divided by the runtime of the measurement
to get the rate in counts per second. Finally, the rate of the peak is divided by the
activity of the source, which had been calculated before.

Every line has been corrected for its associated emission probability by multi-
plication of the nominal activity of the source with the emission probability before
the number of counts in the Photopeak is divided by the activity.
The e�ect of the choice of the integration range on the number of counts in the peak
has been checked by varying the integration range. The di�erences in the number
of counts for the di�erent ranges turned out to be negligible (around 0.1%).

The errors of the Photopeak e�ciencies are determined by usage of the Gaussian
error propagation of the statistical error of the number of counts in the Photopeak.
It is given by the square root of this number and the error of the source activity
that was estimated to be about 5% for all sources:

σ (ε)2 =

(√N
N

)2
1

T
+ (0.05)2

2

(3.11)
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with the total run time T , the Photopeak e�ciency ε and the number of counts in
the peak N [2].

In a next step the intrinsic e�ciency is determined, which can be calculated by
the usage of the following equation:

εint = εphoto ·
4π

Ω
(3.12)

where Ω represents the solid angle (in steradians) subtended by the detector at the
source position.

For the common case of a point source located along the axis of a circular cylindrical
detector, Ω is given by

Ω = 2π

(
1− d√

d2 + a2

)
(3.13)

where d is the source-detector distance and a is the radius of the detector surface
that faces the source[1].

The source-detector distance of the three detectors is 8 cm, so the e�ciency
values are not normalized to the standard distance of 25 cm.

The errors of the intrinsic e�ciency are calculated in the same way as it is done for
the Photopeak e�ciency.

The Photopeak e�ciencies, the intrinsic e�ciencies for all used gamma ray en-
ergies and their related errors for the three detectors are summarized in Tables 3.2,
3.3 and 3.4.

Source Gamma energy [keV] Photopeak e�ciency and error Intrinsic e�ciency and error
22Na 1274.5 (3.90 ± 0.20)E-03 (2.71 ± 0.14)E-02
207Bi 569.7 (14.85 ± 0.74)E-03 (10.30 ± 0.51)E-02
207Bi 1063.7 (10.28 ± 0.51)E-03 (7.13 ± 0.36)E-02
60Co 1173 (2.95 ± 0.15)E-03 (2.04 ± 0.10)E-02
60Co 1332 (2.74 ± 0.14)E-03 (1.90 ± 0.01)E-02

Table 3.2: Gamma ray sources, energies, photopeak e�ciency with its associated
errors and intrinsic e�ciency with its associated errors for the Canberra detector.
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3.3 Results

Source Gamma energy [keV] Photopeak e�ciency and error Intrinsic e�ciency and error
22Na 1274.5 (3.84 ± 0.19)E-03 (2.29 ± 0.11)E-02
207Bi 569.7 (13.59 ± 0.68)E-03 (8.10 ± 0.41)E-02
207Bi 1063.7 (9.62 ± 0.48)E-03 (5.73 ± 0.29)E-02
60Co 1173 (2.80 ± 0.14)E-03 (1.67 ± 0.08)E-02
60Co 1332 (2.61 ± 0.13)E-03 (1.55 ± 0.08)E-02

Table 3.3: Gamma ray sources, energies, photopeak e�ciency with its associated
errors and intrinsic e�ciency with its associated errors for the Ortec 0◦ detector.

Source Gamma energy [keV] Photopeak e�ciency and error Intrinsic e�ciency and error
22Na 1274.5 (3.21 ± 0.16)E-03 (1.91 ± 0.10)E-02
207Bi 569.7 (11.00 ± 0.55)E-03 (6.56 ± 0.33)E-02
207Bi 1063.7 (7.99 ± 0.40)E-03 (4.76 ± 0.24)E-02
60Co 1173 (2.31 ± 0.12)E-03 (1.38 ± 0.07)E-02
60Co 1332 (2.15 ± 0.11)E-03 (1.28 ± 0.06)E-02

Table 3.4: Gamma ray sources, energies, photopeak e�ciency with its associated
errors and intrinsic e�ciency with its associated errors for the Ortec 90◦ detector.

3.3.2 Energy Calibration

As a last step, an energy calibration for the three HPGe detectors has been per-
formed. All gamma rays that have been analyzed are used to �nd a best �t
calibration function for the set up.

The energy calibration of the Canberra detector is determined by

E (bin) = 0.743
keV

bin
· bin− 71.75 keV (3.14)

The energy calibration of the Ortec 0◦ detector is given by

E (bin) = 0.7434
keV

bin
· bin− 67.74 keV (3.15)

Finally, the energy calibration of the Ortec 90◦ detector is expressed by

E (bin) = 0.7383
keV

bin
· bin− 64.84 keV (3.16)

The plots of the three �t functions and the peak positions are shown in Figures 3.8,
3.9 and 3.10.
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Figure 3.8: Best �t linear energy calibration function for the gamma ray peak posi-
tions, here for the Canberra detector
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Figure 3.9: Best �t linear energy calibration function for the gamma ray peak posi-
tions, here for the Ortec 0◦ detector
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Figure 3.10: Best �t linear energy calibration function for the gamma ray peak po-
sitions, here for the Ortec 90◦ detector
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Chapter 4

Conclusion

Within the frame of this Bachelor's thesis, I acquainted myself with the Doppler shift
attenuation method and the experimental methods for characterizing HPGe detec-
tors. I learned to work with the programming language C++ in an object-oriented
way of programming at large and with the data analysis software ROOT in particular.

The experimental tasks of my thesis contained the determination of the Photo-
peak e�ciency and the intrinsic e�ciency as functions of energy, as well as the
energy calibration for three HPGe detectors. Therefore, I have written macro scripts
used by the software root for automating the process of characterization of HPGe
gamma ray detectors. It tried to reduce the amount of analysis steps that have to
be done manually. This process of automation can be further pressed ahead with in
future for simplifying the characterization of HPGe gamma ray detectors.

The accurate knowledge of the detector properties as precise values of the �t
parameters, the results of accurate e�ciency measurements and an exact energy
calibration will improve the accuracy of the DSAM experiment.

Especially, the results of my thesis are necessary to build up a precise Geant4
simulation of the whole DSAM experiment. Such a simulation allows it to simulate
the in-�ight decay of a decelerating ion within the thin target gold foil for the
purpose of a simulation of DSAM gamma ray spectra. These spectra should be as
real as possible. Therefore, my determined detector response functions are needed
to generate a maximum realistic shape of the full-energy peaks that considers all
the di�erent e�ects on the peak's shape due to the detector's environment and the
detector's inherent character, as well as statistical e�ects.

A complete and precise simulation of the whole experiment makes it possible
that the consequences and results of future versions of the experiment or variations
of the observed nuclear reaction can be estimated and predicted. Gamma ray spectra
of future versions of the experiment can be veri�ed and proved by comparing them
to the simulations predictions.
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Appendix A

Fit Functions

As discussed in chapter 3, the measured gamma ray spectra were received from the
three sources used in the e�ciency measurements. The full-energy peaks �nally have
been �tted using a function with di�erent components. In the following, the param-
eters of the best �t functions for all �ve analyzed Photopeaks for all three detectors
are presented, inclusive their respective errors. The parameters and their errors are
calculated by the usage of ROOT scripts I have written. All the �t parameters have
been numerated in the full �t function:

Rfit = p0 + p1 · (x− p2) + p3 · (x− p2)2 + p4 exp

(
−
(
x− p2

p5

)2
)

+ p6 exp (p7 · (x− p8)) erfc

(
x− p8 + p2

9 ·
p7
2

p9

)

+ p10 exp (−p11 · (x− p12)) erfc

(
−
x− p12 + p2

13 ·
p11
2

p13

)

+ p14 · erfc
(
x− p2

p15

)

(A.1)

The �rst line of the equation expresses the polynomial and the Gaussian, the second
and third line express the high energy and low energy "tail" functions and the fourth
line expresses the step function. For a more detailed explanation of the individual
components, see section 3.2
In the tables, the entry "same as pi" means that in the ROOT script this parameter
and parameter pi are one and the same for this �t. The entry "0 (�xed)" means
that in the ROOT script this parameter has not been allowed to deviate from zero.
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Fit parameter Value with error for the best �t function
p0 911.8 ± 24.9
p1 -6.24 ± 0.59
p2 1674 ± 0.3
p3 -0.3389 ± 0.1343
p4 4758 ± 627.7
p5 3.358 ± 0.081
p6 1.664e+05 ± 11271
p7 0.7385 ± 0.0260
p8 1676 ± 0.0
p9 1.791 ± 0.016
p10 0 (�xed)
p11 0 (�xed)
p12 0 (�xed)
p13 0 (�xed)
p14 0 (�xed)
p15 0 (�xed)

Table A.1: Fit parameters, their respective best �t values and errors for the 1173
keV Photopeak of 60Co for the Canberra detector

Fit parameter Value with error for the best �t function
p0 354.7 ± 11.9
p1 -0.7241 ± 0.2700
p2 1888 ± 0.2
p3 -0.2596 ± 0.0499
p4 3713 ± 435.5
p5 3.803 ± 0.072
p6 1.402e+05 ± 6727
p7 0.6811 ± 0.0187
p8 1891 ± 0.0
p9 1.879 ± 0.013
p10 0 (�xed)
p11 0 (�xed)
p12 0 (�xed)
p13 0 (�xed)
p14 0 (�xed)
p15 0 (�xed)

Table A.2: Fit parameters, their respective best �t values and errors for the 1332
keV Photopeak of 60Co for the Canberra detector
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Fit parameter Value with error for the best �t function
p0 1505 ± 48.9
p1 -20.73 ± 5.74
p2 863.2 ± 0.1
p3 0 (�xed)
p4 3.958e+04 ± 27113
p5 1.748 ± 0.055
p6 1.177e+06 ± 310229
p7 1.312 ± 0.062
p8 864.1 ± 0.0
p9 1.402 ± 0.027
p10 0 (�xed)
p11 0 (�xed)
p12 0 (�xed)
p13 0 (�xed)
p14 106.8 ± 52.5
p15 1.402 ± 0.027 (same as p9)

Table A.3: Fit parameters, their respective best �t values and errors for the 569.7
keV Photopeak of 207Bi for the Canberra detector

Fit parameter Value with error for the best �t function
p0 300.4 ± 3.9
p1 -5.859 ± 0.312
p2 1528 ± 0.1
p3 0 (�xed)
p4 9.086e+04 ± 7776
p5 1.746 ± 0.019
p6 1.337e+05 ± 15506
p7 0.8299 ± 0.0086
p8 1527 ± 0.2
p9 1.746 ± 0.019 (same as p5)
p10 0 (�xed)
p11 0 (�xed)
p12 0 (�xed)
p13 0 (�xed)
p14 0 (�xed)
p15 0 (�xed)

Table A.4: Fit parameters, their respective best �t values and errors for the 1063.7
keV Photopeak of 207Bi for the Canberra detector
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Fit parameter Value with error for the best �t function
p0 77.92 ± 2.65
p1 0 (�xed)
p2 1813 ± 0.0
p3 0 (�xed)
p4 0 (�xed)
p5 0 (�xed)
p6 8.598e+04 ± 5408
p7 0.7502 ± 0.0273
p8 1813 ± 0.0 (same as p2)
p9 1.812 ± 0.013
p10 7935 ± 2989.4
p11 0.6329 ± 0.0488
p12 1808 ± 0.3
p13 3.703 ± 0.215
p14 20.02 ± 1.90
p15 1.812 ± 0.013 (same as p9)

Table A.5: Fit parameters, their respective best �t values and errors for the 1274.5
keV Photopeak of 22Na for the Canberra detector

Fit parameter Value with error for the best �t function
p0 1178 ± 9.6
p1 -5.317 ± 0.945
p2 1669 ± 0.0
p3 0 (�xed)
p4 0 (�xed)
p5 0 (�xed)
p6 2.361e+05 ± 22475
p7 0.9136 ± 0.0193
p8 1669 ± 0.0 (same as p2)
p9 1.564 ± 0.016
p10 8.465e+05 ± 238932
p11 1.531 ± 0.063
p12 1668 ± 0.1
p13 1.943 ± 0.034
p14 0 (�xed)
p15 0 (�xed)

Table A.6: Fit parameters, their respective best �t values and errors for the 1173
keV Photopeak of 60Co for the Ortec 0◦ detector
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Fit parameter Value with error for the best �t function
p0 415.5 ± 7.5
p1 -1.693 ± 0.617
p2 1883 ± 0.0
p3 0 (�xed)
p4 8.924e+04 ± 2890
p5 1.852 ± 0.019
p6 4.57e+04 ± 12240
p7 0.8129 ± 0.0355
p8 1882 ± 0.2
p9 1.852 ± 0.019 (same as p5)
p10 2.308e+04 ± 8774
p11 0.6742 ± 0.0683
p12 1881 ± 0.2
p13 1.852 ± 0.019 (same as p5)
p14 0 (�xed)
p15 0 (�xed)

Table A.7: Fit parameters, their respective best �t values and errors for the 1332
keV Photopeak of 60Co for the Ortec 0◦ detector

Fit parameter Value with error for the best �t function
p0 704.7 ±(�xed)
p1 0 (�xed)
p2 857.6 ± 0.0
p3 0 (�xed)
p4 0 (�xed)
p5 0 (�xed)
p6 1.718e+06 ± 98544
p7 1.919 ± 0.022
p8 857.6 ± 0.0 (same as p2)
p9 1.267 ± 0.006
p10 1.973e+04 ± 8226
p11 1.4 ± 0.1
p12 856.7 ± 0.1
p13 0.883 ± 0.107
p14 107.6 ± 5.8
p15 1.267 ± 0.006 (same as p9)

Table A.8: Fit parameters, their respective best �t values and errors for the 569.7
keV Photopeak of 207Bi for the Ortec 0◦ detector
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Fit parameter Value with error for the best �t function
p0 114.9 ± 3.5
p1 0 (�xed)
p2 1521 ± 0.0
p3 0 (�xed)
p4 4.184e+04 ± 1357
p5 1.625 ± 0.020
p6 1.059e+05 ± 18101
p7 1.051 ± 0.050
p8 1522 ± 0.1
p9 1.625 ± 0.020 (same as p5)
p10 6999 ± 7326.1
p11 0.7404 ± 0.1725
p12 1520 ± 0.3
p13 1.625 ± 0.020 (same as p5)
p14 31.07 ± 2.7
p15 1.625 ± 0.020 (same as p5)

Table A.9: Fit parameters, their respective best �t values and errors for the 1063.7
keV Photopeak of 207Bi for the Ortec 0◦ detector

Fit parameter Value with error for the best �t function
p0 100.6 ± 3.1
p1 -0.1859 ± 0.2646
p2 1806 ± 0.0
p3 0 (�xed)
p4 0 (�xed)
p5 0 (�xed)
p6 7.928e+04 ± 6671
p7 0.8809 ± 0.0208
p8 1806 ± 0.0 (same as p2)
p9 1.564 ± 0.022
p10 2.234e+04 ± 4453
p11 0.9646 ± 0.0499
p12 1804 ± 0.1
p13 1.564 ± 0.022 (same as p9)
p14 0 (�xed)
p15 0 (�xed)

Table A.10: Fit parameters, their respective best �t values and errors for the 1274.5
keV Photopeak of 22Na for the Ortec 0◦ detector
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Fit parameter Value with error for the best �t function
p0 821.4 ± 11.4
p1 0 (�xed)
p2 1677 ± 0.0
p3 0 (�xed)
p4 0 (�xed)
p5 0 (�xed)
p6 3.834e+05 ± 21928
p7 1.028 ± 0.014
p8 1677 ± 0.0 (same as p2)
p9 1703 ± 0.009
p10 4063 ± 4507.9
p11 0.638 ± 0.200
p12 1676 ± 0.5
p13 1703 ± 0.009 (same as p9)
p14 145.9 ± 8.4
p15 1703 ± 0.009 (same as p9)

Table A.11: Fit parameters, their respective best �t values and errors for the 1173
keV Photopeak of 60Co for the Ortec 90◦ detector

Fit parameter Value with error for the best �t function
p0 235.8 ± 13.7
p1 -1.514 ± 1.134
p2 1893 ± 0.1
p3 0 (�xed)
p4 3.514e+04 ± 9285
p5 1.668 ± 0.046
p6 1.185e+05 ± 20003
p7 0.9874 ± 0.0145
p8 1892 ± 0.1
p9 1.668 ± 0.046 (same as p5)
p10 2.194e+05 ± 65575
p11 1.412 ± 0.113
p12 1892 ± 0.2
p13 1.668 ± 0.046 (same as p5)
p14 50.08 ± 15.04
p15 1.668 ± 0.046 (same as p5)

Table A.12: Fit parameters, their respective best �t values and errors for the 1332
keV Photopeak of 60Co for the Ortec 90◦ detector
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Fit parameter Value with error for the best �t function
p0 567.9 ± 16.9
p1 -2.624 ± 2.923
p2 863.3 ± 0.2
p3 0 (�xed)
p4 0 (�xed)
p5 0 (�xed)
p6 2.332e+06 ± 168711
p7 1.993 ± 0.026
p8 860 ± 0.0
p9 1.388 ± 0.004
p10 0 (�xed)
p11 0 (�xed)
p12 0 (�xed)
p13 0 (�xed)
p14 171 ± 26.2
p15 1.388 ± 0.004 (same as p9)

Table A.13: Fit parameters, their respective best �t values and errors for the 569.7
keV Photopeak of 207Bi for the Ortec 90◦ detector

Fit parameter Value with error for the best �t function
p0 133.4 ± 2.9
p1 -3.874 ± 0.290
p2 1528 ± 0.0
p3 0 (�xed)
p4 5.16e+04 ± 2046
p5 1.719 ± 0.014
p6 5.988e+04 ± 8250
p7 1.199 ± 0.047
p8 1528 ± 0.2
p9 1.719 ± 0.014 (same as p5)
p10 0 (�xed)
p11 0 (�xed)
p12 0 (�xed)
p13 0 (�xed)
p14 0 (�xed)
p15 0 (�xed)

Table A.14: Fit parameters, their respective best �t values and errors for the 1063.7
keV Photopeak of 207Bi for the Ortec 90◦ detector
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Fit parameter Value with error for the best �t function
p0 45.45 ± 8.98
p1 -0.2299 ± 0.6557
p2 1815 ± 0.0
p3 0 (�xed)
p4 0 (�xed)
p5 0 (�xed)
p6 8.218e+04 ± 13833
p7 0.9713 ± 0.0379
p8 1815 ± 0.0 (same as p2)
p9 1.677 ± 0.015
p10 4485 ± 9573.9
p11 0.9245 ± 0.4254
p12 1813 ± 0.4
p13 1.677 ± 0.015 (same as p9)
p14 15.49 ± 10.06
p15 1.677 ± 0.015 (same as p9)

Table A.15: Fit parameters, their respective best �t values and errors for the 1274.5
keV Photopeak of 22Na for the Ortec 90◦ detector
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Appendix B

Graphic Displays of the Fits

In the following, the graphical display of the Photopeaks used for the e�ciency
measurements, along with the best �t function and their single components, are
summarized. The successful �ts for the 1173 keV and the 1332 keV Photopeak of
60Co for the Canberra detector have already been shown in section 3.2
For the best �t function and its single components, the following colour coding has
been used: the dark blue solid line represents the best �t function, cyan has been
used for the background, red for the Gaussian, green for the low energy tail, pink
for the high energy tail and yellow has been used for the step function.
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Figure B.1: The 569.7 keV photopeak of 207Bi along with the best �t function and
its components for the Canberra detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 41.07/14 = 2.93
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Figure B.2: The 1063.7 keV photopeak of 207Bi along with the best �t function and
its components for the Canberra detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 52.48/27 = 1.94
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Figure B.3: The 1274.5 keV photopeak of 22Na along with the best �t function and
its components for the Canberra detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 83.12/36 = 2.31
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Figure B.4: The 1173 keV photopeak of 60Co along with the best �t function and its
components for the Ortec 0◦ detector. The goodness of the �t is χ2 divided by the
number of degrees of freedom = 37.95/17 = 2.23
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Figure B.5: The 1332 keV photopeak of 60Co along with the best �t function and its
components for the Ortec 0◦ detector. The goodness of the �t is χ2 divided by the
number of degrees of freedom = 35.03/17 = 2.06
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Figure B.6: The 569.7 keV photopeak of 207Bi along with the best �t function and
its components for the Ortec 0◦ detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 22.46/13 = 1.73
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Figure B.7: The 1063.7 keV photopeak of 207Bi along with the best �t function and
its components for the Ortec 0◦ detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 67.01/27 = 2.48
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Figure B.8: The 1274.5 keV photopeak of 22Na along with the best �t function and
its components for the Ortec 0◦ detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 46.53/19 = 2.45
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Figure B.9: The 1173 keV photopeak of 60Co along with the best �t function and its
components for the Ortec 90◦ detector. The goodness of the �t is χ2 divided by the
number of degrees of freedom = 59.35/26 = 2.28
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Appendix B Graphic Displays of the Fits
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Figure B.10: The 1332 keV photopeak of 60Co along with the best �t function and
its components for the Ortec 90◦ detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 32.44/24 = 1.35
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Figure B.11: The 569.7 keV photopeak of 207Bi along with the best �t function and
its components for the Ortec 90◦ detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 37.72/17 = 2.22
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Figure B.12: The 1063.7 keV photopeak of 207Bi along with the best �t function and
its components for the Ortec 90◦ detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 38.02/20 = 1.90
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Figure B.13: The 1274.5 keV photopeak of 22Na along with the best �t function and
its components for the Ortec 90◦ detector. The goodness of the �t is χ2 divided by
the number of degrees of freedom = 40.01/30 = 1.33
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