
Technische Universität München

Using the Batch Farm

Prologue

• All information + scripts from this talk

also available in

A) transfer.ktas.ph.tum.de

B) /home/www/papers/computing

Overview

• Infrastructure

• Parallel vs single job computing

• Basic commands

• How to …

… arrange a job

… send a job

… monitor my stuff

• Please don’t…

Infrastructure

• 21 compute nodes → 570 cores

• ~ 2 Gb RAM / cores

• 20 GPU job slots

• Standard queue: 2,5h / job

• Long queue: 12h / job

• Local storage ~100 Gb per node

• 1/10 Gbit/s network connection / node

SLURM job scheduler
https://www.schedmd.com

Parallel vs single job

• Independent jobs

• Parameter scans

• MC production

• Data analysis (runwise)

• Creating of independent

output files

Parallel running Single running

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Job 1

Job 2

Job 3

• Code development

• Compiling

• Create Plots / Graphs

• Small nTuple analysis

• Merging of several

files

Example: Parallel job

Detector Summary Tape File Analysis (DSTs)

Problem

• 1000 files with 250 events/file

Solution

• Create code locally

• Analyse 1 file per job

• Create 1 output file per job (Plots, Ntuples…)

• Send 1000 jobs to farm

• Merge plots/ntuples afterwards

Example: Single job

Fitting of a peak in plot

Problem

• Fit peaks in 1 or 2 plots

Solution

• Create a macro / program to fit

• Do it locally and check the output

Don’t make life more

complicated than it is!

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

Here you will get some information about

the basic commands. Most of them

provide more information, see “command

–help”

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

SLURM overview. Job, partition and node

information in an graphical overview

Just enter “sview” in a terminal

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

“Fair share” ranking. (How fast do I get

the slot for the next job?)

Just enter “sshare --all” in a terminal

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

Submit a job to the farm

Enter “sbatch --help” for info about the

parameters (will be described later)

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

Kill your jobs by id or all of your jobs

using “scancel –u [ADS]”

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

Gives information about the status of the

running jobs and the queue.

Just enter “squeue” in a terminal

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

Gives information about the nodes,

queues and user of the farm.

Just enter “sinfo” in a terminal

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

A short graphical overview over the users

currently running jobs on the farm.

https://transfer.ktas.ph.tum.de/django/monitor/1/

Basic commands

• sview

• sshare

• sbatch

• scancel

• squeue

• sinfo

• Monitoring software

– Graphical

– Text based

A short text based overview over the users

currently running jobs on the farm.

https://transfer.ktas.ph.tum.de/webpage/monitori

ng_batchfarm.html

How to… arrange a job

• Input:

– File to analyse? (Filelist?)

– Parameters?

• Output:

– Different names/ directories

• Compile before sending to

farm

• How much CPUtime / RAM

• Do I need temporary space?

• Do I need access to /scratch

• Check before farm

Example: Random Numbers

Problem

• Create file with 10 different lines and random

numbers

• Must be scalable to farm

Solution

• Input: the name of the output file has to be given

• Compile

• “Full program”

– Example.cc

– Makefile

→ This generates a executable program

Example: Random Numbers

Example: Random Numbers

• Run it locally to check if it works

How to… send a job

• Select your parameters:

– CPU

– RAM

– Partition

• SLURM can only submit scripts

• Loop over all the jobs you want to submit

• Create a bash/ python script

• Example:

– Create a script with a submit loop (submit.sh)

– Inside, create a temporary script with your job inside

– Run your script

Example: Send 10 jobs

#!/bin/sh

cpu=5 # time limit in minutes for your job,

will be killed after that time!

mem=100 # ram limit in Mb for your job,

it will be killed if it exceeds this

nJobs=10 # number of jobs to be performed

the program is defined here

program=/home/www/papers/computing/programs/Example

name=Example

the output parameters are defined here

output_path=/home/www/papers/computing/testoutput

output_name=Event

output_end=txt

Example: Send 10 jobs
generate a random number to identify the jobs stuff exactly

randomID=$RANDOM

for i in `seq 1 $nJobs`; do

tmp_scriptname=/var/tmp/sub_${randomID}_$i.sh

set your default environment

echo "#!/bin/sh" > $tmp_scriptname

echo ". ~/.bashrc" >> $tmp_scriptname

execute your program to the local disk

echo "${program} /var/tmp/local_${randomID}_$i.txt" >> $tmp_scriptname

copy the completed output to your location

echo "cp /var/tmp/local_${randomID}_$i.txt ${output_path}/${output_name}-$i.${output_end}" >>

$tmp_scriptname

clean up your stuff

echo "rm /var/tmp/local_${randomID}_$i.txt " >> $tmp_scriptname

submit your temporary script to the farm

sbatch --mem-per-cpu=${mem} --time=${cpu} --job-name=$name-${counter} ${tmp_scriptname}

delete your temporary script rm -rf ${tmp_scriptname}

done

Example: Send 10 jobs

submit your temporary script to the farm

sbatch --mem-per-cpu=${mem} --time=${cpu} --job-name=$name-${counter}

${tmp_scriptname}

delete your temporary script

rm -rf ${tmp_scriptname}

done

How to… monitor my stuff

• Check your jobs frequently (squeue…)

– Do they disappear suddenly?

– Do they go down too fast?

• Check the log files in case of problems

– What is written there?

– Is it depending on one

machine?

• Try to run a job locally

Error handling

• Have you checked the logfile?

• Are your scripts and code valid?

• Is your data available?

• Is the fileserver present or

under heavy usage?

• Do your jobs last unusually

long?

Don’t call an

admin without

having checked all

points!

Important Notes

Some important notes:

• Don’t use /tmp. Use /var/tmp

• Don’t write directly to /scratch, copy at the end of the job

• Clean up after your job

• Try to stay under 50k jobs at one time

• Adjust your CPU and RAM

usage reasonable

• Always check your work

• Be friendly to the others

Questions?

