
git tutorial
Andi Mathis

Technische Universität München
15.06.2018



Andi Mathis | TU München 215 June 2018

https://xkcd.com/1597/



Andi Mathis | TU München 315 June 2018

Today’s goal: No more need to memorize – all commands contained in these slides
NB: the approach works nevertheless quite well…

https://xkcd.com/1597/



Why bothering?

• Two simple questions:
• What changes did you do to your code yesterday 
• Are you ad hoc able to reproduce your code as of the day before?
• Me: ”I can barely remember yesterday…”

• In terms of debugging both are equally bad…
– Knowing the most recent changes is helping a lot!

• Plus: what do you do when developing code together?
– Shared folder in dropbox? Enjoy…

• Help? See e.g. https://try.github.io
– … from which some material is used in this presentation

Andi Mathis | TU München 415 June 2018

vs.



Let’s start easy – simple versioning with git

Simple local versioning of files

• git init in the folder you want to have under version control*

• Adds .git directory which contains all the history, configuration, …

• git status to see the status of the repository
– On branch master (let’s discuss branches a bit later)
– No commits yet

– nothing to commit (create/copy files and use "git add" to track)

• What is a commit?
– A snapshot of all the files in your directory
– (of course git does not always save ALL the files…)

Andi Mathis | TU München 515 June 2018

* In case you never used git before it might be that you have to provide your name etc. – git will ask you about that



Let’s try!

• Let’s imagine we start writing a paper - set up a skeleton
• git status to see the status of the repository

– On branch master

– No commits yet

– Untracked files:

– (use "git add <file>..." to include in what will be committed)

– paper.tex

• Cool, it even tells us what to do! 
– We want to keep paper.tex tracked
– git add paper.tex

• That’s it???

Andi Mathis | TU München 615 June 2018



And that’s it?

• No, we still need to commit!

• git commit

• And then enter a nice, meaningful commit message
– Unhappy with the editor?
– git config --global core.editor ” <editor of your choice> ”

• Let’s see what we did – take a look at the history: git log

• commit 8884f9b3244a9627404de30da96a72ec0cd1df4b (HEAD -> master)

• Author: Andreas Mathis <andreas.mathis@cern.ch>

• Date: Wed Jun 13 14:17:30 2018 +0200

• Add skeleton for the paper

• The commit hash is a unique identified of a commit!

Andi Mathis | TU München 715 June 2018

https://xkcd.com/1296/

git add
git commit



How to obtain more information?

• Take a look who did changes to the most recent version of the file?

• git blame <filename>

• There are a few tools to access commit information
– My preference: tig
– Mac: brew install tig
– Ubuntu: apt-get install tig

Andi Mathis | TU München 815 June 2018



Differences between the versions

• Before comitting – what changed?
– To see changes in your working directory prior to a commit: git diff

• Reverting changes from the staging area - DANGER ZONE!
– The file is already committed: git checkout <file>

– The file is new: git reset HEAD <file>

– Reset all changes w.r.t. the last commit: git reset --hard HEAD

• Commit the changes
– Save some time:
– git commit –m ”commit message” 

• Oups, I forgot to add a file to my commit!
– git add <file> 

– git commit --amend

Andi Mathis | TU München 915 June 2018

Andreas Mathis




Ignoring files

• Let’s compile our tex project!
• git status

– On branch master

– Untracked files:

– (use "git add <file>..." to include in what will be committed)

– paper.aux

– paper.log

– paper.pdf

• Can become annoying when files pile up….
– Remedy: .gitignore
– Add files you do not want to have under version control to an empty text file named .gitignore

– Trick: Also wild cards work, e.g. *.pdf
– Add & commit it

Andi Mathis | TU München 1015 June 2018



Branching

When is branching helpful?
• Imagine you cannot decide to which journal you want to submit to

– Create different versions of the paper, but keep e.g. the intro the same
• When developing different, independent features at the same time

– Keep a working master!

• What branches do we have right now?
– git branch

• Create a new one
– git branch <new branch name>

• Switch to the branch
– git checkout <new branch name>

– (do both creation & switch at the same time: git checkout –b <new branch name> )

Andi Mathis | TU München 1115 June 2018



Merging to different branches

• After a few commits in your new branch (and master) we want to update the new branch with the changes in master
• In general, there are two options: merge, or rebase

– For whatever we will encounter, rebase will do!

Andi Mathis | TU München 1215 June 2018

merge rebase



Merge conflicts

• Imaging you have modified one file in the two branches and want to rebase on master
• git rebase master

• git tries to figure out which part has been modified and whether it can put the stuff together
– Sometimes this is not possible - merge conflict!

• git mergetool

– Will open the configured merge tool 
– I recommend meld
– Mac: brew cask install meld
– Ubuntu: sudo apt-get install meld 

– git config --global merge.tool meld

• Once you’re sure everything’s fixed
– git rebase --continue

Andi Mathis | TU München 1315 June 2018

Remote branchLocal branch Result



Collaborative working – the ALICE example

• The basic idea here is that we create a copy (fork) of the global project
– We can play around freely without affecting the original project!

• I set up a dummy project on github (where e.g. all ALICE software is hosted)
– https://github.com/tutorialBot/dummyProject

• To start working on the project you just get a clone of that
– git clone https://github.com/tutorialBot/dummyProject.git

– Happy gitting, but how to get local modifications to the original project?

– If everybody could just add like that modifications -> 💩

– Pull requests!

Andi Mathis | TU München 1415 June 2018

see also https://alisw.github.io/git-tutorial/



How not to mess up

• Get a copy (fork) of the project on github
– Your local repo needs to know your fork exists on github
– git remote add <some name> <address of your fork>

Andi Mathis | TU München 1515 June 2018

remote 
master

your remote 
fork

your local 
repo

fork

remote add



How not to mess up

• Get a copy (fork) of the project on github
– Your local repo needs to know your fork exists on github
– git remote add <some name> <address of your fork>

• Ideal workflow: work locally on a new branch!
– git checkout –b <new branch name>

– Do you changes and commit
– Upload to your fork
– git push <remote name> <branch name>

– And then set up a pull request on github

Andi Mathis | TU München 1615 June 2018

remote 
master

your remote 
fork

your local 
repo

PR

push



How not to mess up

• Get a copy (fork) of the project on github
– Your local repo needs to know your fork exists on github
– git remote add <some name> <address of your fork>

• Ideal workflow: work locally on a new branch!
– Do you changes and commit
– Upload to your fork
– git push <remote name> <branch name>

– And then set up a pull request on github

• But… what if some changes on the master were made in between???
– IMPORTANT: Update local repo before push!!!
– git pull --rebase <master repo> <branch name>

– pull: update local copy and merge
– -- rebase: do a rebase instead of a merge

Andi Mathis | TU München 1715 June 2018

remote 
master

your remote 
fork

your local 
repo

PR

push pull --rebase



How to pull request

Andi Mathis | TU München 1815 June 2018



How to pull request

Andi Mathis | TU München 1915 June 2018



Advanced: How to mess around in the history

• If the project is well maintained (AliPhysics is not), PR’s are reviewed
– = most likely you will need to change some of the commits - how to do that?
– Interactive rebase!
– git rebase -i @~X, where X is the number of commits you want to go back to
– Awesome, all information is there, when you run the command!

• To fix a commit: pick, change, add and amend the commit
– Then, git rebase --continue

– Can you just push to your remote? No!
– Now you have to overwrite your remote – a forced push!
– git push –f <remote name> <branch name>

– As all forced operations: Potential screw-up…

Andi Mathis | TU München 2015 June 2018



Happy gitting!

Andi Mathis | TU München 2115 June 2018


